438 research outputs found

    Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone

    Get PDF
    Both theoretical arguments and empirical evidence suggests that herbivory in general and mammalian winter herbivory in particular is important in arctic-alpine ecosystems. Although knowledge of the effect of herbivores on specific plants and communities is quite extensive, little is known about the relative impact of large and small vertebrate herbivores and how it might vary among different habitats. To address this key issue, we established exclosures with two different mesh sizes in forest and nearby tundra at three different sites in four contrasting locations in the forest-tundra ecotone in northernmost Sweden and Norway. Plant community composition was recorded annually in three permanent plots within each exclosure and an unfenced control. Local densities of vertebrate herbivores were estimated in spring and autumn from 1998 to 2002.Reindeer (Rangifer tarandus) were the most abundant large vertebrate while Norwegian lemmings (Lemmus lemmus) and grey-sided voles (Clethrionomys rufocanus) were the most common small vertebrates. The study reveals that voles and lemmings have larger effects on the vegetation than reindeer in both habitats in all four locations, even though densities of reindeer differ between locations and only two locations experienced lemming peaks during the period of the experiment. The relative abundance of five of the fifteen most common species was significantly influenced by voles and lemmings whereas only a single species was significantly influenced by reindeer. Different analyses give contrasting results on the importance of herbivory in forest versus open heathlands. A principal component analyses revealed that herbivory influenced the vegetation more in open heathlands than in forests. However, an importance index of herbivores did not differ between forest and open heathlands. Moreover, none of the plant species responded differently in the two habitats, when herbivores were removed. Our results suggest that intense and localised selective foraging by small mammals may have a more marked effect on vegetation than transient feeding by reindeer

    Effects of mammalian herbivores on revegetation of disturbed areas in the forest-tundra ecotone in northern Fennoscandia

    Get PDF
    Herbivores influence the structure of plant communities in arctic-alpine ecosystems. However, little is known of the effect of herbivores on plant colonisation following disturbance, and on its variability depending on the identity of herbivores and the characteristics of the habitats. To quantify the role of large and small vertebrate herbivores, we established exclosures of two different mesh sizes around disturbed subplots in forest and nearby tundra habitats in four contrasting locations in the forest-tundra ecotone in northernmost Sweden and Norway. The study revealed that herbivores influenced the abundance but not the species composition of regenerating vegetation. Gaps were colonised by the dominant species in the surrounding vegetation. The only exception to this expectation was Empetrum nigrum, which failed to colonise gaps even though it dominated undisturbed vegetation. Significant effects of herbivory were only detected when both small and large herbivores were excluded. Herbivores decreased the abundance of three of the most common species Vaccinium myrtillus, Vaccinium vitis idaea, and Deschampsia flexuosa. The effect of herbivory on the abundance of these three species did not differ between habitats and locations. However, the composition of the regenerating vegetation differed between habitats and locations. The disturbance treatment increased the species richness on the scale of plots, habitats, and sites. However, on the scale of whole locations, all species found in disturbed areas were also found in undisturbed areas, suggesting that the natural disturbance regime in arctic landscapes is high enough to sustain colonising species

    Predicting Invasive Fungal Pathogens Using Invasive Pest Assemblages: Testing Model Predictions in a Virtual World

    Get PDF
    Predicting future species invasions presents significant challenges to researchers and government agencies. Simply considering the vast number of potential species that could invade an area can be insurmountable. One method, recently suggested, which can analyse large datasets of invasive species simultaneously is that of a self organising map (SOM), a form of artificial neural network which can rank species by establishment likelihood. We used this method to analyse the worldwide distribution of 486 fungal pathogens and then validated the method by creating a virtual world of invasive species in which to test the SOM. This novel validation method allowed us to test SOM's ability to rank those species that can establish above those that can't. Overall, we found the SOM highly effective, having on average, a 96–98% success rate (depending on the virtual world parameters). We also found that regions with fewer species present (i.e. 1–10 species) were more difficult for the SOM to generate an accurately ranked list, with success rates varying from 100% correct down to 0% correct. However, we were able to combine the numbers of species present in a region with clustering patterns in the SOM, to further refine confidence in lists generated from these sparsely populated regions. We then used the results from the virtual world to determine confidences for lists generated from the fungal pathogen dataset. Specifically, for lists generated for Australia and its states and territories, the reliability scores were between 84–98%. We conclude that a SOM analysis is a reliable method for analysing a large dataset of potential invasive species and could be used by biosecurity agencies around the world resulting in a better overall assessment of invasion risk

    Four priority areas to advance invasion science in the face of rapid environmental change

    Get PDF
    Unprecedented rates of introduction and spread of non-native species pose burgeoning challenges to biodiversity, natural resource management, regional economies, and human health. Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in our understanding and response to invasions. Here, we identify four priority areas to advance invasion science in the face of rapid global environmental change. First, invasion science should strive to develop a more comprehensive framework for predicting how the behavior, abundance, and interspecific interactions of non-native species vary in relation to conditions in receiving environments and how these factors govern the ecological impacts of invasion. A second priority is to understand the potential synergistic effects of multiple co-occurring stressors— particularly involving climate change—on the establishment and impact of non-native species. Climate adaptation and mitigation strategies will need to consider the possible consequences of promoting non-native species, and appropriate management responses to non-native species will need to be developed. The third priority is to address the taxonomic impediment. The ability to detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, which cannot be adequately compensated by new molecular technologies alone. Management of biosecurity risks will become increasingly challenging unless academia, industry, and governments train and employ new personnel in taxonomy and systematics. Fourth, we recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established. Cooperation among countries to eradicate or control species established in bridgehead regions should yield greater benefit than independent attempts by individual countries to exclude these species from arriving and establishing

    The effectiveness of e-Learning on biosecurity practice to slow the spread of invasive alien species

    Get PDF
    Online e-Learning is increasingly being used to provide environmental training. Prevention measures including biosecurity are essential to reducing the introduction and spread of invasive alien species (IAS) and are central to international and national IAS policy. This paper is the first to evaluate the effectiveness of e-Learning as a tool to increase awareness, risk perception and biosecurity behaviour in relation to IAS among individuals conducting work activities or research (fieldwork) in the field. We surveyed participants (a mixture of students and professionals) before, and 6 months after undertaking an e-Learning course on IAS and biosecurity practices. Awareness of IAS and self-reported biosecurity behaviour increased after e-Learning among students and professionals. Students had a lower awareness of IAS than professionals before training (20% of students vs 60% of professionals), but after training students showed a greater increase in awareness which led to similar levels of awareness post-training (81%). Prior to training, risk perception was also lower amongst students than professionals (33% of students and 59% of professionals were aware of the risk that their activities posed to the accidental spread of IAS). There was no change in risk perception amongst professionals after training, however training led to a doubling of risk perception in students. E-Learning also led to an increase in reported biosecurity behaviour and cleaning practices and there were higher levels of biosecurity cleaning amongst professionals. The higher awareness and better biosecurity amongst professionals is likely to reflect their familiarity with the issues of IAS and day-to-day activities in the field. Our results suggest that e-Learning is an effective tool to raise awareness and encourage behaviour change among field workers and researchers in an attempt to reduce the risk of accidental introduction and spread of IAS

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur

    Mitochondrial DNA and trade data support multiple origins of Helicoverpa armigera (Lepidoptera, Noctuidae) in Brazil

    Get PDF
    The Old World bollworm Helicoverpa armigera is now established in Brazil but efforts to identify incursion origin(s) and pathway(s) have met with limited success due to the patchiness of available data. Using international agricultural/horticultural commodity trade data and mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and cytochrome b (Cyt b) gene markers, we inferred the origins and incursion pathways into Brazil. We detected 20 mtDNA haplotypes from six Brazilian states, eight of which were new to our 97 global COI-Cyt b haplotype database. Direct sequence matches indicated five Brazilian haplotypes had Asian, African, and European origins. We identified 45 parsimoniously informative sites and multiple substitutions per site within the concatenated (945 bp) nucleotide dataset, implying that probabilistic phylogenetic analysis methods are needed. High diversity and signatures of uniquely shared haplotypes with diverse localities combined with the trade data suggested multiple incursions and introduction origins in Brazil. Increasing agricultural/horticultural trade activities between the Old and New Worlds represents a significant biosecurity risk factor. Identifying pest origins will enable resistance profiling that reflects countries of origin to be included when developing a resistance management strategy, while identifying incursion pathways will improve biosecurity protocols and risk analysis at biosecurity hotspots including national ports

    Identifying the physical features of marina infrastructure associated with the presence of non-native species in the UK

    Get PDF
    Marine invasive non-native species (NNS) are one of the greatest threats to global marine biodiversity, causing significant economic and social impacts. Marinas are increasingly recognised as key reservoirs for invasive NNS. They provide submersed artificial habitat that unintentionally supports the establishment of NNS introduced from visiting recreational vessels. While ballast water and shipping vectors have been well documented, the role of recreational vessels in spreading NNS has been relatively poorly studied. Identification of the main physical features found within marinas, which relate to the presence of NNS, is important to inform the development of effective biosecurity measures and prevent further spread. Towards this aim, physical features that could influence the presence of NNS were assessed for marinas throughout the UK in July 2013. Thirty-three marine and brackish NNS have been recorded in UK marinas, and of the 88 marinas studied in detail, 83 contained between 1 and 13 NNS. Significant differences in freshwater input, marina entrance width and seawall length were associated with the presence of NNS. Additionally, questionnaires were distributed to marina managers and recreational vessel owners to understand current biosecurity practices and attitudes to recreational vessel biosecurity. The main barriers to biosecurity compliance were cited as cost and time. Further work identifying easily distinguished features of marinas could be used as a proxy to assess risk of invasion. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00227-016-2941-8) contains supplementary material, which is available to authorized users
    corecore