251 research outputs found

    Influence of reduced phytate on the agronomic and seed characteristics of soybean lines with reduced palmitate

    Get PDF
    Non-ruminant animals fed soybean [Glycine max (L.) Merr.] meal cannot metabolize the phosphorus (P) that is in the form of phytate. A soybean line CX1834-1-6 was developed that had a major reduction in phytate P and a concomitant increase in inorganic P, which is available to non-ruminants. The objective of this study was to determine the impact of low phytate (LP) on agronomic and seed traits of lines with reduced palmitate in the seed oil. A backcross population of soybean was developed by crossing CX1834-1-6 to a reduced-palmitate line B01769B019 and backcrossing the F1 plants to B01769B019. Twenty BC1F2-derived lines with LP and reduced palmitate and 20 lines with normal phytate (NP) and reduced palmitate from the population were evaluated at three Iowa environments in 2003. The LP lines had a mean seedling emergence that was 22.3 percentage units less than the NP lines. Although the plant density of the LP lines was less than the NP lines, the mean yield of the two types was not significantly different. The palmitate and stearate content of the LP lines was significantly greater than that of the reduced-palmitate parent. The reduced emergence and greater saturate content of the LP lines may make it difficult to develop acceptable cultivars for production of LP soybean meal and low-saturate oil

    Stream network analysis and geomorphic flood plain mapping from orbital and suborbital remote sensing imagery application to flood hazard studies in central Texas

    Get PDF
    The author has identified the following significant results. Development of a quantitative hydrogeomorphic approach to flood hazard evaluation was hindered by (1) problems of resolution and definition of the morphometric parameters which have hydrologic significance, and (2) mechanical difficulties in creating the necessary volume of data for meaningful analysis. Measures of network resolution such as drainage density and basin Shreve magnitude indicated that large scale topographic maps offered greater resolution than small scale suborbital imagery and orbital imagery. The disparity in network resolution capabilities between orbital and suborbital imagery formats depends on factors such as rock type, vegetation, and land use. The problem of morphometric data analysis was approached by developing a computer-assisted method for network analysis. The system allows rapid identification of network properties which can then be related to measures of flood response

    Phomopsis Stem Canker of Sunflower in North America: Correlation with Climate and Solutions Through Breeding and Management

    Get PDF
    Climate change is occurring in the central US and is interacting with agroecological factors to increase biotic stress in sunflower. Certain species of Diaporthe cause Phomopsis stem canker in sunflower and other dicotyledonous weeds and crops. The increase in precipitation already observed in the states of North Dakota, South Dakota, and Minnesota have increased the chances of outbreaks of necrotrophic pathogens, like Diaporthe. We discuss how climate trends, combined with technological, management, and economic interactions, are correlated with increasing incidence of Phomopsis stem canker in these and adjacent areas in North America. Further, we discuss management options and the role of improved sunflower genetics in reducing Phomopsis stem canker outbreak risk

    Potential Use of Perennial Sunflower to Reduce Blackbird Damage to Sunflower

    Get PDF
    Wildlife Conservation Sunflower Plots (WCSP) have shown potential to reduce blackbird (Icteridae) damage in commercial sunflower. Also known as lure, decoy, or trap crops, WCSP are strategically placed food plots that provide an easily available and proximate food source that entices blackbirds away from valuable commercial crops. By providing an alternative food source, WCSP reduce direct damage to commercial fields, while also lowering indirect costs that producers incur attempting to prevent blackbird damage. However, cost inefficiencies have deterred widespread use of WCSP. Cost-benefit ratios of using WCSP would be greatly improved if a perennial sunflower were used instead of the annual types currently available. Perennial sunflower would reduce seed cost and planting cost, and perhaps lower opportunity costs, if able to thrive on poorer quality soils. In the near-term, scientists are focused on producing a perennial sunflower sufficiently productive to replace annualWCSP plantings. In 2013, scientists from the University of Minnesota, USDA-Agricultural Research Service, and USDAWildlife Services National Wildlife Research Center evaluated a test plot of an open-pollinated variety of perennial sunflower resulting from genetic crossing of a domesticated annual species (Helianthus annuus) and a perennial wild species (H. tuberosus). Here, we report on results from the 2013 field test and discuss the outlook for development of perennial sunflower, which would help lessen damage to commercial sunflower when used in WCSP; provide a pesticide-free food source for beneficial insects, such as honey bees; help stabilize highly erodible lands near wetlands; and provide year-round habitat for wildlife. Lastly, we provide an initial strategy for using perennial sunflower to reduce blackbird damage in commercial sunflower

    Potential Use of Perennial Sunflower to Reduce Blackbird Damage to Sunflower

    Get PDF
    Wildlife Conservation Sunflower Plots (WCSP) have shown potential to reduce blackbird (Icteridae) damage in commercial sunflower. Also known as lure, decoy, or trap crops, WCSP are strategically placed food plots that provide an easily available and proximate food source that entices blackbirds away from valuable commercial crops. By providing an alternative food source, WCSP reduce direct damage to commercial fields, while also lowering indirect costs that producers incur attempting to prevent blackbird damage. However, cost inefficiencies have deterred widespread use of WCSP. Cost-benefit ratios of using WCSP would be greatly improved if a perennial sunflower were used instead of the annual types currently available. Perennial sunflower would reduce seed cost and planting cost, and perhaps lower opportunity costs, if able to thrive on poorer quality soils. In the near-term, scientists are focused on producing a perennial sunflower sufficiently productive to replace annualWCSP plantings. In 2013, scientists from the University of Minnesota, USDA-Agricultural Research Service, and USDAWildlife Services National Wildlife Research Center evaluated a test plot of an open-pollinated variety of perennial sunflower resulting from genetic crossing of a domesticated annual species (Helianthus annuus) and a perennial wild species (H. tuberosus). Here, we report on results from the 2013 field test and discuss the outlook for development of perennial sunflower, which would help lessen damage to commercial sunflower when used in WCSP; provide a pesticide-free food source for beneficial insects, such as honey bees; help stabilize highly erodible lands near wetlands; and provide year-round habitat for wildlife. Lastly, we provide an initial strategy for using perennial sunflower to reduce blackbird damage in commercial sunflower

    Molecular signatures of aneuploidy-driven adaptive evolution.

    Full text link
    Alteration of normal ploidy (aneuploidy) can have a number of opposing effects, such as unbalancing protein abundances and inhibiting cell growth but also accelerating genetic diversification and rapid adaptation. The interplay of these detrimental and beneficial effects remains puzzling. Here, to understand how cells develop tolerance to aneuploidy, we subject disomic (i.e. with an extra chromosome copy) strains of yeast to long-term experimental evolution under strong selection, by forcing disomy maintenance and daily population dilution. We characterize mutations, karyotype alterations and gene expression changes, and dissect the associated molecular strategies. Cells with different extra chromosomes accumulated mutations at distinct rates and displayed diverse adaptive events. They tended to evolve towards normal ploidy through chromosomal DNA loss and gene expression changes. We identify genes with recurrent mutations and altered expression in multiple lines, revealing a variant that improves growth under genotoxic stresses. These findings support rapid evolvability of disomic strains that can be used to characterize fitness effects of mutations under different stress conditions

    Phomopsis stem canker of sunflower in North America: correlation with climate and solutions through breeding and management☆ ☆☆

    Get PDF
    Climate change is occurring in the central US and is interacting with agroecological factors to increase biotic stress in sunflower. Certain species of Diaporthe cause Phomopsis stem canker in sunflower and other dicotyledonous weeds and crops. The increase in precipitation already observed in the states of North Dakota, South Dakota, and Minnesota have increased the chances of outbreaks of necrotrophic pathogens, like Diaporthe. We discuss how climate trends, combined with technological, management, and economic interactions, are correlated with increasing incidence of Phomopsis stem canker in these and adjacent areas in North America. Further, we discuss management options and the role of improved sunflower genetics in reducing Phomopsis stem canker outbreak risk
    • …
    corecore