5 research outputs found
Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds
Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS) and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lower than expected. This study aims at understanding these fracture mechanisms and focuses on two common steel grades joined by Resistance Spot Welding (RSW): DP600 (a dual phase steel) and Usibor®1500 (a martensitic steel). The parameters affecting the failure modes and load bearing capacity are investigated during two common types of tests: the Cross Tension and Tensile Shear tests. The positive effects of heterogeneous welding with respect to the corresponding homogeneous configurations are discussed, as well as the consequences of a so-called Dome failure occurring at the weld nugget boundary
Etude expérimentale et numérique du comportement mécanique de soudures d'arc et de points dissemblables d'aciers avancés à très haute résistance
Nowadays, ecological policy encourages carmakers to reduce the global vehicle weight. Fine steel sheets assemblies with different thickness optimizing each part of the assembly are used and steelmakers develop steels which are more and more resistant namely Advanced High Strength Steel (AHSS) with a good compromise between mechanical strength and ductility (stamping). During the mechanical tests of heterogeneous AHSS welding, unusual fracture modes are observed, in particular along the interface between the Heat Affected Zone (HAZ) and the Fusion Zone or molten zone (FZ). These fractures generally occur with lower strength than expected for these welding. The objectives of the study are to understand fracture mechanisms during mechanical testing and create a mechanical FE model is developed to be able to predict mechanical strength of the welded assemblies. Firstly, a study of heterogeneous welding constituted of two well-known steel grades of ArcelorMittal aims at understanding failure mechanism and parameters affecting the failure modes. Different configurations are studied with thickness. FE model is built with mechanical response identified of each zone (base materials, heat affected zones and fusion zone), using ArcelorMittal models and experimental data. Failure criteria based on ductile damage taking into account the influence of the triaxiality are used and some cohesive elements are used to simulate interfacial failure. Two configurations of mechanical testing in the case of Resistance Spot Welding (cross tension and tensile shear tests) are considered. Model predictions were very accurate with experimental failure modes and strengths. Then, this FE modelling method was successfully applied to a highly heterogeneous spot welding case including a new third generation low density AHSS concept with high aluminum and manganese content. Failure modes and strengths obtained were comparable. Moreover, FE modelling method was applied on more complex configurations, in particular on a triple thick spot welded assembly. The robustness of the model to predict partial failure modes and strengths of a triple thick spot weld has been demonstrated. In addition, FE modelling methodology was extended to another welding type: arc welding. In this case, two sheets are welded in ab overlap configuration with a filler wire. FE model allows predicting the failure zone and strength of welded assembly.De nos jours, la politique écologique encourage les constructeurs automobiles à réduire le poids global du véhicule. Des tôles d'acier fines d'épaisseur différente optimisant chaque partie de l'assemblage sont utilisées et les sidérurgistes développent des aciers de plus en plus résistants à savoir l'Acier Haute Résistance Avancé (AHSS) avec un bon compromis entre résistance mécanique et ductilité (emboutissage). Lors des essais mécaniques de soudage hétérogène AHSS, des modes de fractures inhabituels sont observés, notamment le long de l'interface entre la zone affectée par la chaleur (ZAT) et la zone de fusion ou zone fondue (ZF). Ces fractures se produisent généralement avec une résistance inférieure à celle attendue pour ces soudures. Les objectifs de l'étude sont de comprendre les mécanismes de rupture au cours des essais mécaniques et de créer un modèle mécanique de FE conçu pour prédire la résistance mécanique des assemblages soudés. Tout d'abord, une étude de soudage hétérogène constituée de deux nuances d'acier bien connues d'ArcelorMittal vise à comprendre le mécanisme de défaillance et les paramètres affectant les modes de défaillance. Différentes configurations sont étudiées avec l'épaisseur. Le modèle FE est construit avec une réponse mécanique identifiée de chaque zone (matériaux de base, zones affectées par la chaleur et zone de fusion), en utilisant des modèles d'ArcelorMittal et des données expérimentales. Des critères de défaillance basés sur des dommages ductiles tenant compte de l'influence de la triaxialité sont utilisés et certains éléments cohésifs sont utilisés pour simuler une défaillance interfaciale. Deux configurations d'essais mécaniques dans le cas du soudage par résistance par points (essais de traction transversale et de traction) sont considérées. Les prédictions du modèle étaient très précises avec les modes de défaillance et les forces expérimentaux. Ensuite, cette méthode de modélisation FE a été appliquée avec succès à un boîtier de soudage par points très hétérogène comprenant un nouveau concept AHSS basse densité de troisième génération à forte teneur en aluminium et en manganèse. Les modes d'échec et les forces obtenues étaient comparables. De plus, la méthode de modélisation FE a été appliquée sur des configurations plus complexes, en particulier sur un assemblage soudé par points triple épaisseur. La robustesse du modèle pour prédire les modes de défaillance partielle et les forces d'une soudure par points triple épaisseur a été démontrée. En outre, la méthodologie de modélisation FE a été étendue à un autre type de soudage: le soudage à l'arc. Dans ce cas, deux feuilles sont soudées en configuration de chevauchement ab avec un fil d'apport. Le modèle FE permet de prédire la zone de rupture et la résistance de l'assemblage soudé
Finite element modeling of deformation and fracture of advanced high strength steels dissimilar spot welds
International audienc
Investigation of the Failure of Advanced High Strength Steels Heterogeneous Spot Welds
Nowadays, environmental regulation encourages carmakers to reduce the global vehicle weight. Steelmakers develop grades with high performance (Advanced High Strength Steels, AHSS) and fine steel sheet assemblies are used in car body structures, with an optimized thickness in each part. However, unusual fracture modes are sometimes observed during the mechanical tests of heterogeneous AHSS welds, made of dissimilar steel grades and sheet thicknesses. Weld fractures can occur with a strength lower than expected. This study aims at understanding these fracture mechanisms and focuses on two common steel grades joined by Resistance Spot Welding (RSW): DP600 (a dual phase steel) and Usibor®1500 (a martensitic steel). The parameters affecting the failure modes and load bearing capacity are investigated during two common types of tests: the Cross Tension and Tensile Shear tests. The positive effects of heterogeneous welding with respect to the corresponding homogeneous configurations are discussed, as well as the consequences of a so-called Dome failure occurring at the weld nugget boundary
P2X7-deficiency improves plasticity and cognitive abilities in a mouse model of Tauopathy
International audienceAlzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid β (Aβ) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aβ-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aβ and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies