11 research outputs found

    Dietary Liberalization in Tetrahydrobiopterin-Treated PKU Patients:Does It Improve Outcomes?

    Get PDF
    Purpose: this systematic review aimed to assess the effects of dietary liberalization following tetrahydrobiopterin (BH4) treatment on anthropometric measurements, nutritional biomarkers, quality of life, bone density, mental health and psychosocial functioning, and burden of care in PKU patients. Methods: the PubMed, Cochrane, and Embase databases were searched on 7 April 2022. We included studies that reported on the aforementioned domains before and after dietary liberalization as a result of BH4 treatment in PKU patients. Exclusion criteria were: studies written in a language other than English; studies that only included data of a BH4 loading test; insufficient data for the parameters of interest; and wrong publication type. Both within-subject and between-subject analyses were assessed, and meta-analyses were performed if possible. Results: twelve studies containing 14 cohorts and 228 patients were included. Single studies reported few significant differences. Two out of fifteen primary meta-analyses were significant; BMI was higher in BH4-treated patients versus controls (p = 0.02; standardized mean difference (SMD) (95% confidence interval (CI)) = −0.37 (−0.67, −0.06)), and blood cholesterol concentrations increased after starting BH4 treatment (p = 0.01; SMD (CI) = −0.70 (−1.26, −0.15)). Conclusion: there is no clear evidence that dietary liberalization after BH4 treatment has a positive effect on anthropometric measurements, nutritional biomarkers, or quality of life. No studies could be included for bone density, mental health and psychosocial functioning, and burden of care

    Prenatal reflective functioning in primiparous women with a high-risk profile

    Get PDF
    The concept of maternal reflective functioning (RF) has been gaining increasing interest as a possible intermediate mechanism in associations between a wide range of psychosocial risk factors and poor child outcomes. The purpose of the present study was to determine which psychosocial risk factors are linked to prenatal RF in a high-risk (HR) group of primiparous women. Differences in prenatal RF between the HR group and a low-risk (LR) control group also were examined. The sample consisted of 162 women (M = 22.22 years, SD = 2.39; 83 classified as HR). RF was coded from the Pregnancy Interview (A. Slade, 2007a). Risk status was assessed by means of the Mini-International Neuropsychiatric Interview-plus (M.I.N.I.-plus; D.V. Sheehan et al., 1997) and several questionnaires. HR women demonstrated significantly lower RF quality than did the LR group. Regression analyses indicated that maternal education, size of social support network, and substance use during pregnancy were the strongest predictors of prenatal RF for the HR group. The results suggest that maternal RF potentially could be an important target for those prevention and intervention programs that aim to reduce adverse psychosocial development in offspring of HR mothers

    Social-cognitive functioning and social skills in patients with early treated phenylketonuria: a PKU-COBESO study

    Get PDF
    Objective: Early treatment of phenylketonuria (ET-PKU) prevents mental retardation, but many patients still show cognitive and mood problems. In this study, it was investigated whether ET-PKU-patients have specific phenylalanine (Phe-)related problems with respect to social-cognitive functioning and social skills. Methods: Ninety five PKU-patients (mean age 21.6 ± 10.2 years) and 95 healthy controls (mean age 19.6 ± 8.7 years) were compared on performance of computerized and paper-and-pencil tasks measuring social-cognitive abilities and on parent- and self-reported social skills, using multivariate analyses of variance, and controlling for general cognitive ability (IQ-estimate). Further comparisons were made between patients using tetrahydrobiopterin (BH4, N = 30) and patients not using BH4. Associations with Phe-levels on the day of testing, during childhood, during adolescence and throughout life were examined. Results: PKU-patients showed poorer social-cognitive functioning and reportedly had poorer social skills than controls (regardless of general cognitive abilities). Quality of social-cognitive functioning was negatively related to recent Phe-levels and Phe-levels between 8 and 12 years for adolescents with PKU. Qu

    Development of international consensus recommendations using a modified Delphi approach

    Get PDF
    Funding Information: This work was supported by BioMarin Pharmaceutical Inc . Funding Information: The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo . SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Funding Information: Ideally, access to (neuro)psychological/psychiatric support should assist adolescents with identifying, understanding, and reporting of PKU-specific challenges (Table 3), offering individualized recommendations on managing these challenges. Although there is no replacement for mental health services for patients with identified needs, psychosocial support from PKU peers, e.g., through PKU camps, virtual social events, etc., can at least in the short-term help to improve metabolic control by providing individuals an opportunity to participate in supportive PKU-related educational activities potentially reducing perceived social isolation [91]. In addition to PKU camps, which may be very specific to certain regions or countries, HCPs should consider encouraging involvement in local, regional, national and international PKU patient/family advocacy and social support organizations, introducing adolescents and young adults to national/international patient registries [92,93]. Besides support from PKU peers, patients can benefit from non-PKU peer support, although some adolescents and young adults with PKU may not disclose to others and may avoid eating in with others or eating in public due to potential feelings of anxiety or feelings of being ashamed of their disease. In addition, patients with PKU of all ages, but particularly vulnerable adolescents and young adults, can benefit from having the opportunity to learn about and practice strategies that help promote feelings of empowerment and self-efficacy that can be used in both familiar and unfamiliar environments where they may experience peer pressure and feel the need to ‘fit in’. For example, a role-play approach involving behavioral rehearsal, self-monitoring, goal setting, and training in problem-solving skills with emphasis on initiation and inhibition (i.e., how to say no) could be provided by parents, PKU peers, or even members of the PKU team. These types of activities can be used to teach adolescents with PKU how to react in social situations, such as dining out, helping to avoid indulging and increased risk-taking behavior, a hallmark of the adolescent period [94].This work was supported by BioMarin Pharmaceutical Inc.The content of this manuscript was based on preparatory pre-meeting activities and presentations and discussions during two advisory board meetings that were coordinated and funded by BioMarin Pharmaceutical Inc. All authors or their institutions received funding from BioMarin to attend at least one or both meetings. Additional disclosures: BKB received consulting payments from BioMarin, Shire, Genzyme, Alexion, Horizon Therapeutics, Denali Therapeutics, JCR Pharma, Moderna, Aeglea BioTherapeutics, SIO Gene Therapies, Taysha Gene Therapy, Ultragenyx, and Inventiva Pharma, participated as clinical trial investigator for BioMarin, Shire, Denali Therapeutics, Homology Medicines, Ultragenyx, and Moderna as well as received speaker fees from BioMarin, Shire, Genzyme, and Horizon Therapeutics. AH received consulting payments from BioMarin, Chiesi, Shire, Genzyme, Amicus, and Ultragenyx, participated as clinical trial investigator for Ultragenyx as well as received speaker fees from Alexion, Amicus, BioMarin, Genzyme, Nutricia, Sobi, and Takeda. ABQ received consulting payments from BioMarin, speaker fees from BioMarin, Nutricia, Vitaflo, Sanofi, Takeda, Recordati, and travel support from Vitaflo. SEC received consulting payments and speaker fees from BioMarin as well as consulting payments from Synlogic Therapeutics. COH was clinical trial investigator for BioMarin and received consulting and speaker payments from BioMarin. SCJH received consulting payments and travel support from BioMarin and Homology Medicines. NL received consulting payments from Alnylam, Amicus, Astellas, BioMarin, BridgeBio, Chiesi, Genzyme/Sanofi, HemoShear, Horizon Therapeutics, Jaguar, Moderna, Nestle, PTC Therapeutics, Reneo, Shire, Synlogic, and Ultragenyx, participated as clinical trial investigator for Aeglea, Amicus, Astellas, BioMarin, Genzyme/Sanofi, Homology, Horizon, Moderna, Pfizer, Protalix, PTC Therapeutics, Reneo, Retrophin/Travere therapeutics, Shire, and Ultragenyx, as well as received speaker fees from Cycle Pharmaceuticals, Leadiant and Recordati. MCM II received consulting payments from BioMarin, Horizon Therapeutics, Rhythm Pharmaceuticals, Applied Therapeutics, Cycle Therapeutics, and Ultragenyx. ALSP received speaker fees from BioMarin. JCR received consulting payments from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, and Nutricia, speaker fees from Applied Pharma Research, Merck Serono, BioMarin Pharmaceutical, Vitaflo, Cambrooke, PIAM, LifeDiet, and Nutricia, as well as travel support from Applied Pharma Research, Merck Serono, BioMarin, Vitaflo, Cambrooke, PIAM, and Nutricia. SS received consulting payments, research grants, speaker fees, and travel support from BioMarin and participated as clinical trials investigator for BioMarin. ASV received consulting payments from BioMarin, Horizon Therapeutics, and Ultragenyx and participated as clinical trial investigator for Acadia, Alexion, BioMarin, Genzyme, Homology Medicines, Kaleido, Mallinckrodt, and Ultragenyx. JV received consulting payments from BioMarin, LogicBio Pharmaceuticals, Sangamo Therapeutics, Orphan Labs, Synlogic Therapeutics, Sanofi, Axcella Health, Agios Pharmaceuticals, and Applied Therapeutics as well as travel grants from BioMarin and LogicBio Pharmaceuticals. MW received consulting payments, speaker fees, and travel support from BioMarin, and participated as clinical trial investigator for Mallinckrodt, Roche, Wave, Cycle Therapeutics, and Intrabio. ACM participated in strategic advisory boards and received honoraria as a consultant and as a speaker for Merck Serono, BioMarin, Nestlé Health Science (SHS), Applied Pharma Research, Actelion, Retrophin, Censa, PTC Therapeutics, and Arla Food. Publisher Copyright: © 2022 The AuthorsBackground: Early treated patients with phenylketonuria (PKU) often become lost to follow-up from adolescence onwards due to the historical focus of PKU care on the pediatric population and lack of programs facilitating the transition to adulthood. As a result, evidence on the management of adolescents and young adults with PKU is limited. Methods: Two meetings were held with a multidisciplinary international panel of 25 experts in PKU and comorbidities frequently experienced by patients with PKU. Based on the outcomes of the first meeting, a set of statements were developed. During the second meeting, these statements were voted on for consensus generation (≥70% agreement), using a modified Delphi approach. Results: A total of 37 consensus recommendations were developed across five areas that were deemed important in the management of adolescents and young adults with PKU: (1) general physical health, (2) mental health and neurocognitive functioning, (3) blood Phe target range, (4) PKU-specific challenges, and (5) transition to adult care. The consensus recommendations reflect the personal opinions and experiences from the participating experts supported with evidence when available. Overall, clinicians managing adolescents and young adults with PKU should be aware of the wide variety of PKU-associated comorbidities, initiating screening at an early age. In addition, management of adolescents/young adults should be a joint effort between the patient, clinical center, and parents/caregivers supporting adolescents with gradually gaining independent control of their disease during the transition to adulthood. Conclusions: A multidisciplinary international group of experts used a modified Delphi approach to develop a set of consensus recommendations with the aim of providing guidance and offering tools to clinics to aid with supporting adolescents and young adults with PKU.publishersversionpublishe

    Neurobiological and behavioral stress reactivity in children prenatally exposed to tobacco

    No full text
    This study examined neurobiological and behavioral stress reactivity in children who had been prenatally exposed to tobacco. Neurobiological stress reactivity was measured using salivary cortisol and alpha-amylase levels at five different time points throughout a stressful neuropsychological test session, which involved a competition against a videotaped opponent. Participants (mean age: 10.6 years, SD 1.3) were 14 prenatally exposed (PE) children, 9 children with disruptive behavior problems (DBD), and 15 normal controls (NC). For cortisol responses, no significant differences between the three groups were observed. Normal controls, however, had significantly higher alpha-amylase levels than PE-children throughout the test session, and their alpha-amylase levels also increased throughout the session, whereas these remained low and stable for PE-children. Alpha-amylase levels and trajectory of PE-children were similar to those observed for DBD-children. PE-children also showed significantly increased behavioral stress reactivity compared to NC-children, and neurobiological and behavioral stress reactivity were inversely related in PE-children, again similar to what was observed for DBD-children. These results support the hypothesis that prenatal smoking may lead to long-lasting neurobiological and behavioral changes in exposed offspring

    Correlations of blood and brain biochemistry in phenylketonuria: Results from the Pah-enu2 PKU mouse

    Get PDF
    Background: In phenylketonuria (PKU), treatment monitoring is based on frequent blood phenylalanine (Phe) measurements, as this is the predictor of neurocognitive and behavioural outcome by reflecting brain Phe concentrations and brain biochemical changes. Despite clinical studies describing the relevance of blood Phe to outcome in PKU patients, blood Phe does not explain the variance in neurocognitive and behavioural outcome completely. Methods: In a PKU mouse model we investigated 1) the relationship between plasma Phe and brain biochemistry (Brain Phe and monoaminergic neurotransmitter concentrations), and 2) whether blood non-Phe Large Neutral Amino Acids (LNAA) would be of additional value to blood Phe concentrations to explain brain biochemistry. To this purpose, we assessed blood amino acid concentrations and brain Phe as well as monoaminergic neurotransmitter levels in in 114 Pah-Enu2 mice on both B6 and BTBR backgrounds using (multiple) linear regression analyses. Results: Plasma Phe concentrations were strongly correlated to brain Phe concentrations, significantly negatively correlated to brain serotonin and norepinephrine concentrations and only weakly correlated to brain dopamine concentrations. From all blood markers, Phe showed the strongest correlation to brain biochemistry in PKU mice. Including non-Phe LNAA concentrations to the multiple regression model, in addition to plasma Phe, did not help explain brain biochemistry. Conclusion: This study showed that blood Phe is still the best amino acid predictor of brain biochemistry in PKU. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain Phe concentrations, necessitating a search for other additional parameters. Take-home message: Brain biochemistry in PKU is still best explained by blood phenylalanine. Nevertheless, neurocognitive and behavioural outcome cannot fully be explained by blood or brain phenylalanine concentrations, necessitating a search for other additional parameters

    Emotional and behavioral problems, quality of life and metabolic control in NTBC-treated Tyrosinemia type 1 patients

    No full text
    BACKGROUND: Treatment with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) and dietary phenylalanine and tyrosine restriction improves physical health and life expectancy in Tyrosinemia type 1 (TT1). However, neurocognitive outcome is suboptimal. This study aimed to investigate behavior problems and health-related quality of life (HR-QoL) in NTBC-dietary-treated TT1 and to relate this to phenylalanine and tyrosine concentrations. RESULTS: Thirty-one TT1 patients (19 males; mean age 13.9 ± 5.3 years) were included in this study. Emotional and behavioral problems, as measured by the Achenbach System of Empirically Based Assessment, were present in almost all domains. Attention and thought problems were particularly evident. HR-QoL was assessed by the TNO AZL Children's and Adults QoL questionnaires. Poorer HR-QoL as compared to reference populations was observed for the domains: independent daily functioning, cognitive functioning and school performance, social contacts, motor functioning, and vitality. Both internalizing and externalizing behavior problems were associated with low phenylalanine (and associated lower tyrosine) concentrations during the first year of life. In contrast, high tyrosine (and associated higher phenylalanine) concentrations during life and specifically the last year before testing were associated with more internalizing behavior and/or HR-QoL problems. CONCLUSIONS: TT1 patients showed several behavior problems and a lower HR-QoL. Associations with metabolic control differed for different age periods. This suggests the need for continuous fine-tuning and monitoring of dietary treatment to keep phenylalanine and tyrosine concentrations within target ranges in NTBC-treated TT1 patients
    corecore