1,742 research outputs found

    The role of mesoscale eddies time and length scales on phytoplankton production

    Get PDF
    Horizontal mixing has been found to play a crucial role in the development of spatial plankton structures in the ocean. We study the influence of time and length scales of two different horizontal two-dimensional (2-D) flows on the growth of a single phytoplankton patch. To that end, we use a coupled model consisting of a standard three component ecological NPZ model and a flow model able to mimic the mesoscale structures observed in the ocean. Two hydrodynamic flow models are used: a flow based on Gaussian correlated noise, for which the Eulerian length and time scales can be easily controlled, and a multiscale velocity field derived from altimetry data in the North Atlantic ocean. We find the optimal time and length scales for the Gaussian flow model favouring the plankton spread. These results are used for an analysis of a more realistic altimetry flow. We discuss the findings in terms of the time scale of the NPZ model, the qualitative interaction of the flow with the reaction front and a Finite-Time Lyapunov Exponent analysis

    GSI-HPC cluster

    Get PDF

    Thermodynamic Equilibria in Carbon Nitride Photocatalyst Materials and Conditions for the Existence of Graphitic Carbon Nitride g-C3N4

    Get PDF
    We quantify the thermodynamic equilibrium conditions that govern the formation of crystalline heptazine-based carbon nitride materials, currently of enormous interest for photocatalytic applications including solar hydrogen evolution. Key phases studied include the monomeric phase melem, the 1D polymer melon, and the hypothetical hydrogen free 2D graphitic carbon nitride phase "g-C3N4". Our study is based on. density functional theory including van der Waals dispersion terms with different experimental conditions represented by the chemical potential of NH3. Graphitic carbon nitride is the subject of a vast number of studies, but its existence is still controversial. We show that typical conditions found in experiments pertain to the polymer melon (2D planes of 1D hydrogen-bonded polymer strands). In contrast, equilibrium synthesis of heptazine (h)-based g-h-C3N4 below its experimentally known decomposition temperature requires much less likely conditions, equivalent to low NH3 partial pressures around 1 Pa at 500 degrees C and around 10(3) Pa even at 700 degrees C. A recently reported synthesis of triazine (t)-based g-t-C3N4 in a salt melt is interpreted as a consequence of the altered local chemical environment of the C3N4 nanocrystallites

    The elephant in the room of density functional theory calculations

    Get PDF
    Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζquality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζbasis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here

    The three-nucleon bound state using realistic potential models

    Full text link
    The bound states of 3^3H and 3^3He have been calculated using the Argonne v18v_{18} plus the Urbana three-nucleon potential. The isospin T=3/2T=3/2 state have been included in the calculations as well as the nn-pp mass difference. The 3^3H-3^3He mass difference has been evaluated through the charge dependent terms explicitly included in the two-body potential. The calculations have been performed using two different methods: the solution of the Faddeev equations in momentum space and the expansion on the correlated hyperspherical harmonic basis. The results are in agreement within 0.1% and can be used as benchmark tests. Results for the CD-Bonn interaction are also presented. It is shown that the 3^3H and 3^3He binding energy difference can be predicted model independently.Comment: 5 pages REVTeX 4, 1 figures, 6 table

    Precision calculation of γdπ+nn\gamma d\to \pi^+ nn within chiral perturbation theory

    Full text link
    The reaction γdπ+nn\gamma d\to \pi^+ nn is calculated up to order χ5/2\chi^{5/2} in chiral perturbation theory, where χ\chi denotes the ratio of the pion to the nucleon mass. Special emphasis is put on the role of nucleon--recoil corrections that are the source of contributions with fractional power in χ\chi. Using the known near threshold production amplitude for γpπ+n\gamma p\to \pi^+ n as the only input, the total cross section for γdπ+nn\gamma d\to \pi^+ nn is described very well. A conservative estimate suggests that the theoretical uncertainty for the transition operator amounts to 3 % for the computed amplitude near threshold.Comment: 28 page

    Scaling of the specific heat in superfluid films

    Full text link
    We study the specific heat of the xyx-y model on lattices L×L×HL \times L \times H with LHL \gg H (i.e. on lattices representing a film geometry) using the Cluster Monte--Carlo method. In the HH--direction we apply Dirichlet boundary conditions so that the order parameter in the top and bottom layers is zero. We find that our results for the specific heat of various thickness size HH collapse on the same universal scaling function. The extracted scaling function of the specific heat is in good agreement with the experimentally determined universal scaling function using no free parameters.Comment: 4 pages, uuencoded compressed PostScrip

    Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases

    Get PDF
    A bicyclic peptide scaffold was chemically adapted to generate diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1). Starting from a prototype molecule—sunflower trypsin inhibitor-1 (SFTI-1)—we obtained light-controllable inhibitors of T1 with Ki in the low nanomolar range, whose activity could be modulated over 20-fold by irradiation. The inhibitory potency as well as resistance to proteolytic degradation were systematically studied on a series of 17 SFTI-1 analogues. The hydrogen bond network that stabilizes the structure of inhibitors and possibly the enzyme–inhibitor binding dynamics were affected by isomerization of the photoswitch. The feasibility of manipulating enzyme activity in time and space was demonstrated by controlled digestion of gelatin-based hydrogel and an antimicrobial peptide BP100-RW. Finally, our design principles of diarylethene photoswitches are shown to apply also for the development of other serine protease inhibitor

    Modern nuclear force predictions for the neutron-deuteron scattering lengths

    Get PDF
    The nd doublet and quartet scattering lengths have been calculated based on the modern NN and 3N interactions. We also studied the effect of the electromagnetic interactions in the form introduced in AV18. Switching them off for the various nuclear force models leads to shifts of up to +0.04 fm for doublet scattering length, which is significant for present day standards. The electromagnetic effects have also a noticeable effect on quartet scattering length, which otherwise is extremely stable under the exchange of the nuclear forces. For the current nuclear force models there is a strong scatter of the 3H binding energy and the doublet scattering length values around an averaged straight line (Phillips line). This allows to use doublet scattering length and the 3H binding energy as independent low energy observables.Comment: 16 pages, 1 table, 4 ps figure
    corecore