39 research outputs found

    Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography

    Get PDF
    A well-preserved ammonoid fauna of Early Dienerian age has long been known from the lower portion of the Candelaria Formation in the old Candelaria silver mining district in Mineral and Esmeralda Counties, Nevada, but for a number of reasons, this fauna has never been studied in detail nor illustrated. Previous authors assigned this ammonoid fauna to the Early Dienerian Proptychites candidus Zone of Canada. In reality, it more closely resembles the Tethyan faunas than the higher palaeolatitude Canadian faunas, thus indicating the presence of some degree of equatorial faunal exchange between opposite sides of the Panthalassic Ocean during Early Dienerian time. It also indicates the onset of a provincialism, which contrasts with the cosmopolitan Griesbachian faunas. A rigorous taxonomic analysis of the Candelaria fauna allows us to differentiate the following ten species, which include two new species and one new genus (Mullericeras nov. gen.) belonging to the new family Mullericeratidae: Ambites lilangensis (Krafft, 1909), Ambites aff. radiatus (BrĂŒhwiler, Brayard, Bucher and Guodun, 2008), Ussuridiscus sp. indet., "Koninckites” aff. kraffti Spath, 1934, Mullericeras spitiense (Krafft, 1909), Mullericeras fergusoni nov. sp., Mullericeras sp. indet., Proptychites haydeni (Krafft, 1909), Proptychites pagei nov. sp., Vavilovites sp. indet. and Parahedenstroemia kiparisovae Shigeta and Zakharov, 2009. This Early Dienerian fauna correlates with the Ambites fauna known from the base of the Ceratite Marls in the Salt Range and from the base of the "Meekoceras” beds in Spiti (northern Gondwanian margin). The fauna also permits the precise dating of a shelfal anoxic episode on the equatorial North American margin. This anoxic event correlates in time with similar palaeoceanographic changes in the southern Tethys, which indicates that the Early Triassic biotic recovery was at least partly shaped by such discrete, short events rather than by pervasive and lingering adverse environmental condition

    3D Buried Utility Location Using A Marching-Cross-Section Algorithm for Multi-sensor Data Fusion

    Get PDF
    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel marching-cross-section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM), and Vibro-acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman filter (EKF) is proposed for marching existing utility tracks from a scan cross section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used the more buried utility segments can be detected with more accurate location and orientation

    3D buried utility location using a marching-cross-section algorithm for multi-sensor data fusion

    Get PDF
    We address the problem of accurately locating buried utility segments by fusing data from multiple sensors using a novel Marching-Cross-Section (MCS) algorithm. Five types of sensors are used in this work: Ground Penetrating Radar (GPR), Passive Magnetic Fields (PMF), Magnetic Gradiometer (MG), Low Frequency Electromagnetic Fields (LFEM) and Vibro-Acoustics (VA). As part of the MCS algorithm, a novel formulation of the extended Kalman Filter (EKF) is proposed for marching existing utility tracks from a scan cross-section (scs) to the next one; novel rules for initializing utilities based on hypothesized detections on the first scs and for associating predicted utility tracks with hypothesized detections in the following scss are introduced. Algorithms are proposed for generating virtual scan lines based on given hypothesized detections when different sensors do not share common scan lines, or when only the coordinates of the hypothesized detections are provided without any information of the actual survey scan lines. The performance of the proposed system is evaluated with both synthetic data and real data. The experimental results in this work demonstrate that the proposed MCS algorithm can locate multiple buried utility segments simultaneously, including both straight and curved utilities, and can separate intersecting segments. By using the probabilities of a hypothesized detection being a pipe or a cable together with its 3D coordinates, the MCS algorithm is able to discriminate a pipe and a cable close to each other. The MCS algorithm can be used for both post-and on-site processing. When it is used on site, the detected tracks on the current scs can help to determine the location and direction of the next scan line. The proposed “multi-utility multi-sensor” system has no limit to the number of buried utilities or the number of sensors, and the more sensor data used, the more buried utility segments can be detected with more accurate location and orientation.</p

    Globacrochordiceras gen. nov. (Acrochordiceratidae, late Early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods)

    Get PDF
    19 pagesInternational audienceGlobacrochordiceras transpacificum gen. et sp. nov. is an ammonoid (Ammonoidea, Cephalopoda) with a shell characterized by plicate ribbing (rounded and undulating ribs strengthening on the venter without interruption), increasing involution through ontogeny, overhanging and deep umbilical wall, absence of tuberculation, subtriangular whorl section, globose adult shape with a closed umbilicus followed by an abrupt egressive coiling, and a subammonitic adult suture line. This new taxon occurs in Nevada (USA) and in Guangxi (South China). It has its typical occurrence within the Neopopanoceras haugi Zone of late Spathian age (Early Triassic). The plicate ribbing, suture line and general shell shape are diagnostic of the family Acrochordiceratidae. The large adult size, high degree of involution and subammonitic suture line of Globacrochordiceras markedly contrast with the next younger genus of the family (Paracrochordiceras of early Anisian age, Middle Triassic), which is evolute and displays a ceratitic suture shape. Shell coiling and suture line of Globacrochordiceras are closer to that of the youngest member of the family: Acrochordiceras carolinae (late middle Anisian). The latter is the end-member of a long-term morphological evolutionary trend of the family during the early and middle Anisian. This trend composed of classical increases in adult size (Cope's rule), shell involution and suture indentation, lasted ca. four Myr. The sudden morphological evolutionary jump between Globacrochordiceras and Paracrochordiceras at the Spathian/Anisian (Early/Middle Triassic) boundary may correspond to a generalized morphological reset of long-term trends, a process that differs from classic paedomorphic transformations. A dramatic global sea level change and carbon isotope positive excursion at the Early/Middle Triassic boundary both indicate stressful environmental changes that may have triggered this evolutionary jump

    Biogeography of Triassic Ammonoids

    Full text link
    Ammonoids nearly died out during the Permian-Triassic (PT) mass extinction (~ 252 Ma), but quickly and rather impressively recovered in less than ~ 1.5 myr during the Early Triassic (Tozer 1981a; Brayard et al. 2009a; Brayard and Bucher 2015; Fig. 7.1). Only one survivor group, a derivative of the Xenodiscaceae, is usually considered as the root-stock of all Triassic, and thus, all post-Triassic ammonoids (Kummel 1973a; Spinosa et al. 1975; Tozer 1981a, 1981b; Page 1996; Brayard et al. 2006), making post-PT ammonoids a “quasi-monophyletic” group (but see Kummel 1972; Glenister and Furnish 1981; Brayard et al. 2007a; McGowan and Smith 2007; Leonova 2011; Zakharov and Moussavi Abnavi 2013)

    Smithian ammonoid faunas from northeastern Nevada: implications for Early Triassic biostratigraphy and correlation within the western USA basin

    Full text link
    Intensive sampling of the lower portion of the Thaynes Group within the Palomino Ridge area (northeastern Nevada) yielded abundant and well-preserved Smithian (Early Triassic) ammonoid faunas. Ammonoid taxonomy and a detailed biostratigraphy for this locality are reported herein. One new genus (Palominoceras) and one new species (?Pseudosageceras bullatum) are described. Additionally, based on new data from Palomino Ridge and previous data from neighboring localities in Utah, we porvide here the first quantitative Smithian ammonoid biochronological scheme for the western US basin. This new zonation is based on the Unitary Associations (UA) method. The biochronical sequence comprises five unitary association zones that can be correlated with other localities from the Northern Indian Margin (Salt Range, Pakistan, Spiti, northern India and Tulong, South Tibet). Three unitary association zone (UAZ1, UAZ2 and UAZ3) are defined for the early Smithian, one (UAZ4) spans the entire middle Smithian and one (UAZ5) signifies the first part of the late Smithian. Finally, a hypothetical UAZ6 would represent the second part of the late Smithian

    Boxplots showing maximum size ( =  total body length) of marine tetrapod (‘amphibians’, reptiles) and maximum standard lengths of marine non-tetrapod vertebrates (osteichthyans, chondrichthyians).

    No full text
    <p>A. Tetrapod data for the Early Triassic (11 taxa) and the Anisian (30 taxa). Note that the apparent increase in size is not significant. B, C. Non-tetrapod data comprising marine bony fishes (Actinistia, Actinopterygii) and some chondrichthyans with reliable body size estimates in the Early Triassic and the Anisian (early Middle Triassic). The upper two columns in (B) depict the pooled data, whereas in (C) the Early Triassic is split into the respective sub-stages. Based on data taken from the literature for 111 and 107 species for the Early Triassic and the Anisian respectively (see Table S1 in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088987#pone.0088987.s001" target="_blank">File S1</a>). The boxes represent the 25–75 percent quartiles (bold horizontal lines indicate the medians) and the width of the tails the whole spread of data.</p
    corecore