1,983 research outputs found

    Resolving The Moth at Millimeter Wavelengths

    Full text link
    HD 61005, also known as "The Moth," is one of only a handful of debris disks that exhibit swept-back "wings" thought to be caused by interaction with the ambient interstellar medium (ISM). We present 1.3 mm Submillimeter Array (SMA) observations of the debris disk around HD 61005 at a spatial resolution of 1.9 arcsec that resolve the emission from large grains for the first time. The disk exhibits a double-peaked morphology at millimeter wavelengths, consistent with an optically thin ring viewed close to edge-on. To investigate the disk structure and the properties of the dust grains we simultaneously model the spatially resolved 1.3 mm visibilities and the unresolved spectral energy distribution. The temperatures indicated by the SED are consistent with expected temperatures for grains close to the blowout size located at radii commensurate with the millimeter and scattered light data. We also perform a visibility-domain analysis of the spatial distribution of millimeter-wavelength flux, incorporating constraints on the disk geometry from scattered light imaging, and find suggestive evidence of wavelength-dependent structure. The millimeter-wavelength emission apparently originates predominantly from the thin ring component rather than tracing the "wings" observed in scattered light. The implied segregation of large dust grains in the ring is consistent with an ISM-driven origin for the scattered light wings.Comment: 10 pages, 6 figure

    The Structure of the DoAr 25 Circumstellar Disk

    Full text link
    We present high spatial resolution (< 0.3" = 40AU)SubmillimeterArrayobservationsofthe865microncontinuumemissionfromthecircumstellardiskaroundtheyoungstarDoAr25.Despiteitsbrightmillimeteremission,thissourceexhibitsonlyacomparativelysmallinfraredexcessandlowaccretionrate,suggestingthatthematerialandstructuralpropertiesoftheinnerdiskmaybeinanadvancedstateofevolution.AsimplemodelofthephysicalconditionsinthediskisderivedfromthesubmillimetervisibilitiesandthecompletespectralenergydistributionusingaMonteCarloradiativetransfercode.Forthestandardassumptionofahomogeneousgrainsizedistributionatalldiskradii,theresultsindicateashallowsurfacedensityprofile, AU) Submillimeter Array observations of the 865 micron continuum emission from the circumstellar disk around the young star DoAr 25. Despite its bright millimeter emission, this source exhibits only a comparatively small infrared excess and low accretion rate, suggesting that the material and structural properties of the inner disk may be in an advanced state of evolution. A simple model of the physical conditions in the disk is derived from the submillimeter visibilities and the complete spectral energy distribution using a Monte Carlo radiative transfer code. For the standard assumption of a homogeneous grain size distribution at all disk radii, the results indicate a shallow surface density profile, \Sigma \propto r^{-p}$ with p = 0.34, significantly less steep than a steady-state accretion disk (p = 1) or the often adopted minimum mass solar nebula (p = 1.5). Even though the total mass of material is large (M_d = 0.10 M_sun), the densities inferred in the inner disk for such a model may be too low to facilitate any mode of planet formation. However, alternative models with steeper density gradients (p = 1) can explain the observations equally well if substantial grain growth in the planet formation region (r < 40 AU) has occurred. We discuss these data in the context of such models with dust properties that vary with radius and highlight their implications for understanding disk evolution and the early stages of planet formation.Comment: ApJL in pres

    ALMA Observations of the Largest Proto-Planetary Disk in the Orion Nebula, 114-426: A CO Silhouette

    Get PDF
    We present ALMA observations of the largest protoplanetary disk in the Orion Nebula, 114-426. Detectable 345 GHz (856 micron) dust continuum is produced only in the 350 AU central region of the ~1000 AU diameter silhouette seen against the bright H-alpha background in HST images. Assuming optically thin dust emission at 345 GHz, a gas-to-dust ratio of 100, and a grain temperature of 20 K, the disk gas-mass is estimated to be 3.1 +/- 0.6 Jupiter masses. If most solids and ices have have been incorporated into large grains, however, this value is a lower limit. The disk is not detected in dense-gas tracers such as HCO+ J=4-3, HCN J=4-3, or CS =7-6. These results may indicate that the 114-426 disk is evolved and depleted in some light organic compounds found in molecular clouds. The CO J=3-2 line is seen in absorption against the bright 50 to 80 K background of the Orion A molecular cloud over the full spatial extent and a little beyond the dust continuum emission. The CO absorption reaches a depth of 27 K below the background CO emission at VLSR ~6.7 km/s about 0.52 arcseconds (210 AU) northeast and 12 K below the background CO emission at VLSR ~ 9.7 km/s about 0.34 arcseconds (140 AU) southwest of the suspected location of the central star, implying that the embedded star has a mass less than 1 Solar mass .Comment: 20 pages, 4 figure

    ALMA Observations of the Orion Proplyds

    Get PDF
    We present ALMA observations of protoplanetary disks ("proplyds") in the Orion Nebula Cluster. We imaged 5 individual fields at 856um containing 22 HST-identified proplyds and detected 21 of them. Eight of those disks were detected for the first time at submillimeter wavelengths, including the most prominent, well-known proplyd in the entire Orion Nebula, 114-426. Thermal dust emission in excess of any free-free component was measured in all but one of the detected disks, and ranged between 1-163 mJy, with resulting disk masses of 0.3-79 Mjup. An additional 26 stars with no prior evidence of associated disks in HST observations were also imaged within the 5 fields, but only 2 were detected. The disk mass upper limits for the undetected targets, which include OB stars, theta1Ori C and theta1Ori F, range from 0.1-0.6 Mjup. Combining these ALMA data with previous SMA observations, we find a lack of massive (>3 Mjup) disks in the extreme-UV dominated region of Orion, within 0.03 pc of O-star theta1Ori C. At larger separations from theta1Ori C, in the far-UV dominated region, there is a wide range of disk masses, similar to what is found in low-mass star forming regions. Taken together, these results suggest that a rapid dissipation of disk masses likely inhibits potential planet formation in the extreme-UV dominated regions of OB associations, but leaves disks in the far-UV dominated regions relatively unaffected.Comment: ApJ, in pres

    Global, Multi-Objective Trajectory Optimization With Parametric Spreading

    Get PDF
    Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented
    corecore