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GLOBAL, MULTI-OBJECTIVE TRAJECTORY OPTIMIZATION 
WITH PARAMETRIC SPREADING 

Matthew A. Vavrina,* Jacob A. Englander,† Sean M. Phillips,‡ and Kyle M. 
Hughes§  

Mission design problems are often characterized by multiple, competing trajec-

tory optimization objectives.  Recent multi-objective trajectory optimization for-

mulations enable generation of globally-optimal, Pareto solutions via a multi-ob-

jective genetic algorithm.  A byproduct of these formulations is that clustering in 

design space can occur in evolving the population towards the Pareto front.  This 

clustering can be a drawback, however, if parametric evaluations of design varia-

bles are desired.  This effort addresses clustering by incorporating operators that 

encourage a uniform spread over specified design variables while maintaining Pa-

reto front representation.  The algorithm is demonstrated on a Neptune orbiter 

mission, and enhanced multidimensional visualization strategies are presented. 

INTRODUCTION 

Almost inherently, mission design is a compromise between different objectives such as maximizing 

payload mass and minimizing the time of flight (TOF), among others.  Optimizing multiple objectives to 

produce the Pareto front1 of optimal solutions, and thus, an understanding of the tradeoff between the objec-

tives, is valuable in preliminary assessment of mission feasibility and subsequent design refinement.  More-

over, the ability to evaluate the sensitivity of the objectives to the mission design variables such as launch 

date, arrival date, destination body (e.g., asteroid-hopping missions), and mission systems variables such as 

solar array size, the number of low-thrust engines, and launch vehicle is frequently sought.  When conducting 

these trade studies, identifying the global optimum can be the difference between mission viability and one 

that does not close within requirements. 

Recent work on global, multi-objective trajectory and systems optimization using evolutionary algorithms 

(EA) has enabled simultaneous optimization of multiple objectives to efficiently generate Pareto front repre-

sentations.2,3,4,5  One such approach is implemented in NASA’s Evolutionary Mission Trajectory Generator 

(EMTG),6 which incorporates a global-local hybrid algorithm to solve multi-objective hybrid optimal control 

problems (MOHOCP).4,5  EMTG is composed of an inner and outer loop that function in concert for global, 

multi-objective optimization of either high- or low-thrust trajectories.  Both high- and low-thrust trajectory 

transcriptions are formulated as non-linear programming problems, and are available for problem definition 

within the EMTG inner-loop formulation.  A NLP solver, SNOPT,7 is applied to locally optimize an initial 

guess generated by a monotonic basin hopping (MBH) routine, providing a global, stochastic search of the 

trajectory design space.  An outer-loop, multi-objective optimizer based on the non-dominated sorting genetic 

algorithm II (NSGA-II)8 drives the inner loop to identify a set of Pareto-optimal solutions.  The outer loop 
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conducts a search over user-defined trajectory variables such as TOF, launch date, arrival date, and 

flyby/gravity-assist bodies.  Additionally, the outer loop is capable of mission systems optimization, with 

spacecraft hardware parameters such as engine type, number of thrusters, solar array power, solar array type, 

and launch vehicle included as discrete design variables.  The NLP/MBH inner loop optimizes the continuous 

NLP trajectory variables for the set of system and trajectory parameters defined by the outer loop. The hybrid 

algorithm strategically steers the EA population of designs towards the Pareto front for any number objectives 

such as maximizing final spacecraft mass or minimizing TOF, departure C3 power, or total ∆V.  

A natural byproduct of EA formulations, such as the outer loop in EMTG, is that clustering in design 

space can occur in evolving the population of designs towards the Pareto front and the optimal objective 

space.  That is, members of the population that occupy optimal regions of the design space will tend to have 

better objective function values, and will be promoted to future EA generations.  For some problem types 

and objective functions, the optimal regions of the design space are distinguished by narrow spans of design 

variable values, which induces the clustering in design space.  This clustering can be a drawback, however, 

if parametric evaluations of principal design variables such as launch and arrival date are desired.  That is, a 

uniform spreading across the range of the design parameter is frequently sought at some point in the mission 

design process.  Understanding the sensitivity of the mission objectives to critical design variables can pro-

vide important mission insight such as how long a launch can be delayed until the mission become infeasible. 

This work addresses the intrinsic design space clustering of EA-based multi-objective optimization algo-

rithms by developing EA operators that encourage a uniform spread over specified design variables while 

concurrently maintaining a representation of the Pareto front.  The parametric spreading algorithm is based 

on the previously-developed NSGA-II formulation for global, multi-objective trajectory and systems optimi-

zation in EMTG.  The first section of the paper provides background on the high- and low-thrust trajectory 

transcriptions, before outlining the MBH/NLP-based inner-loop algorithm applied for single objective tra-

jectory optimization.  Next, the parametric spreading, multi-objective algorithm is detailed with description 

of the operators developed to encourage spreading in design space.  Finally, results of the algorithm are 

applied to two example problems, a high-thrust Neptune rendezvous mission and a low-thrust mission to 

return a sample from Deimos. 

TRAJECTORY MODELING AND OPTIMIZAITON 

EMTG exploits a multi-layer mission architecture that allows for flexible optimization of multiple flyby 

trajectories with variable trajectory legs.  The multiple-shooting framework incorporated in the high- and 

low-thrust transcriptions affords the inner loop robust optimization properties.  This robustness is critical to 

the monotonic basin hopping routine that stochastically searches for optimal trajectories, providing a NLP 

solver initial guesses for gradient-based refinement.  In turn, the flexibility, efficiency, and robustness of the 

inner loop is vital to outer-loop multi-objective optimization efficacy. 

Mission Structuring 

EMTG missions are formulated with three lev-

els of event types as illustrated in Figure 1.  The top-

level mission structure includes all event types com-

prising a mission such as departures, arrivals, Deep 

Space Maneuvers (DSMs), and flybys.  Missions 

consist of one or more journeys, defining the trajec-

tory in terms of the set of events at the required tar-

get bodies of the mission: the starting, ending, and 

any required intermediate bodies.  Events are de-

fined by the user or the outer loop.  The boundaries 

of a journey are the locations at which the spacecraft 

will execute specific events, and can be constrained 

in numerous ways.  Journeys are in turn made up of 

one or more phases.  Phases are similar to journeys, 

except that they may start and end at bodies other 

than the required journey bodies to enable flybys 

Figure 1. EMTG mission structure 
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that are incorporated strictly for trajectory performance, and not as encounters that are required as part of the 

mission.  As an example, the DAWN mission to Vesta and Ceres would be composed of two journeys: an 

initial Earth to Vesta journey and a Vesta to Ceres journey.  However, the initial journey incorporates a Mars 

flyby to decrease total ΔV, and two phases comprise that initial journey.  This three-level structure allows an 

optimizer to vary the number of phases as well as the flyby bodies within a journey, and is applied for all 

transcriptions in EMTG. 

High-Thrust Trajectory Modeling 

For high-thrust trajectory optimization, this work employs a direct, multiple shooting transcription within 

a patched-conic modeling framework called MGAnDSMs for multiple gravity assists (MGA) with n DSMs 

per phase, using a shooting technique, s.9  The MGAnDSMs transcription enables the design of a wide variety 

of mission scenarios with any number of DSMs, multiple gravity assists, and a range of mission-specific 

constraints directly prescribed in the optimization formulation.  Within the inner loop the MGAnDSMs ex-

ploits analytic derivatives for improved robustness to initial guesses. 

A diagram of the trajectory transcription is illustrated in Figure 2, outlining the trajectory structure for a 

single phase in a mission.  A match point is incorporated between the two end points in each trajectory phase 

with forward/backward shooting for control of initial guess error growth.  The endpoints represent the begin-

ning and end of the phase in mission time (left to right in figure), and are typically planetary bodies.  The 

right end point can be a target body, flyby body, or gravity assist body.  The arrows in the diagram represent 

impulsive maneuvers, which instantaneously change the spacecraft’s velocity.  The maneuvers are separated 

in time by a Δt optimization variable, and maneuvers at the phase end points are also possible if designated.    

The number of maneuvers per phase may be specified by the user or the outer loop.  If fewer than n maneuvers 

are optimal for the transfer, one or more of the potential maneuvers is driven to a zero magnitude.  

 

Figure 2. MGAnDSMs transcription diagram with n=4  

From the phase start point, the trajectory is propagated forward in time until the match-point DSM is 

reached.  At each maneuver epoch, the spacecraft velocity is changed instantaneously by the impulsive ma-

neuver vector as determined by the optimizer.  Similarly, the trajectory is propagated backwards in time from 

the phase end point to the match point with each maneuver instantaneously modifying the spacecraft velocity 

along the way.  Kepler propagation is used by the propagator for efficiency.  A match point maneuver resides 

on the forward propagation side of the match point, and varies in time according to the Δt variables of the 

phase.  For a feasible trajectory the optimizer must drive any discontinuity in position, velocity, or mass 

within a small tolerance at the match point.  Additionally, the summation of the Δt variables of the phase 

must be equal to the phase time of flight.  If a phase begins with a launch vehicle, a polynomial curve fit is 

applied to determine initial spacecraft mass, m0, as a function of C3: 
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where σLV is a user-specified launch vehicle margin, and aLV through fLV are the polynomial coefficients de-

rived from a launch vehicle performance curve. 

The full mission transcription 

applies a multiple shooting strategy 

from body-based control nodes to 

the phase match points as illus-

trated in Figure 3.  In this way, er-

rors in the initial guess do not grow 

unabated throughout a full mission 

propagation.  Multiple trajectory 

phases between flybys are con-

structed for multiple gravity assist 

problems with n maneuvers al-

lowed for each phase.  For simpli-

fied modeling, flybys are modeled 

using the zero sphere-of-influence 

approach10 in which the spacecraft 

position is matched to the flyby 

body at a control node, and the 

body imparts an instantaneous 

change in the spacecraft’s central-

body velocity.  

Low-Thrust Trajectory Modeling 

As with the high-thrust trajectory modeling, the low-thrust trajectory transcription applied in this work is 

structured on a robust multiple shooting scheme.  Namely, the Sims-Flanagan11 transcription is employed, in 

which low-thrust arcs are discretized into a user-specified number of segments.  At the midpoint of each 

segment an impulsive ΔV maneuver is applied, approximating continuous thrusting by the spacecraft.  The 

∆V magnitude is constrained by the maximum change in velocity that could be accrued at maximum thrust 

during the segment. This direct method of transcription significantly reduces the dimensionality of the prob-

lem for optimization efficiency at the cost of some modeling fidelity.  Further improving efficiency is the use 

of two-body propagation between segment midpoints, which substantially reduces computational complexity 

associated with higher-fidelity propagation options.  The spacecraft mass is propagated assuming a constant 

mass flow rate throughout the time segment.  

Like the high-thrust transcription, a for-

ward/backward shooting technique is applied to a 

match point located between two end point bodies 

as illustrated in Figure 4. For feasibility, the posi-

tion and velocity discontinuities at the match point 

must be reduced to a small tolerance by the opti-

mizer. This approach to low-thrust trajectory opti-

mization has been applied in wide ranging mission 

studies using several different software packages 

including MALTO12, GALLOP13, and Parallel 

Global Multiobjective Optimizer,14 in addition to 

EMTG. 

Accurate hardware modeling is important for 

low-thrust trajectories as the trajectory is tightly 

coupled with the spacecraft mass and thrust capa-

bility.  Furthermore, the outer loop in this work 

searches over discrete hardware models driving 

both the mass of the vehicle and the available 

thrust.  Polynomial fits are incorporated to model 

Figure 4. Sims-Flanagan trajectory formulation 

(from Reference 12) 

Figure 3: MGAnDSMs full-mission transcription 
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the performance of the thruster. The thrust, T, in mN, and mass flow rate, maxm , in mg/s for each electric 

propulsion thruster are modeled as a function of the current power to the engine such that 

 TTTTT ePdPcPbPaT  234
  (2) 

and 

 FFFFF ePdPcPbPam  234
max

 .  
(3) 

The power available to an engine, P, is limited between an upper and lower bound dependent on the on the 

thruster. The thrust is zero if the supplied power to the thruster is less than the minimum operational power 

level, and power available to the engine is capped at the maximum power level. The polynomials are, in 

general, based on curve fits to laboratory data. Different curve fits may be available for the same engine 

based on selected operating modes to which the curves are fit.  EMTG allows for any number thrusters.  For 

the example problems in this paper a 1/r2 power model is applied, where r is the range to the Sun. However, 

EMTG supports higher fidelity polynomials according to specific array performance.  The launch vehicle is 

modeled as in equation 1 for the high-thrust transcription. 

Inner Loop: Global Single-Objective Optimization 

The NLP problem resulting from both MGAnDSMs and the Sims-Flanagan transcription for a single 

objective can be stated as: 
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where f(x)is the objective function, c(x) is a vector of the nonlinear inequality constraints, A is a matrix of 

linear constraints, and xlb and xub are vectors defining the lower and upper bounds on the vector of problem 

decision variables x.   

The availability of analytic derivatives and 

a sparse Jacobian make the sequential quad-

ratic programming (SQP) solver SNOPT well 

suited to optimize the inner NLP problem.  

Exploiting derivative information for a local 

search of the design enables efficiency and ro-

bustness, but an initial guess in the vicinity of 

the local optimum is still required by the SQP 

routine.  Additionally, SQP approaches do not 

provide a global search of the design space.  

To overcome these characteristics of the gra-

dient-based approaches, stochastic optimiza-

tion wrappers can be implemented to globally 

search the design space without requiring an 

initial guess in a global-local hybrid formula-

tion.15  In these approaches the global search 

algorithm guides the local search layer, tacti-

cally providing the inner loop an initial guess 

for gradient-based local refinement.   

In this work a monotonic basin hopping 

strategy is implemented as a global search 

component in EMTG.  MBH operates as a 

Algorithm 1 Monotonic Basin Hopping with NLP 

    generate random point  

    run NLP solver to find point * using initial guess 

     

    if is feasible then 

          save * to archive 

    while not hit stop criterion do 

           generate randomly perturbing  

           for each TOF variable ti in x’ do 

               if rand(0,1) < ρtime-hop then 

                   shift ti forward or backward 1 synodic period 

           run NLP solver to find point * from  

           if * is a feasible and  then 

                 

                 save * to archive 

          else if is infeasible and then 

                 

    return best in archive 
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Monte-Carlo-like optimization scheme, taking stochastic “hops” in design space from an initial base design.  

The approach is well-suited for problems in which local optima are clustered together as the search is focused 

on the region of the design space near the current best solution (the exploitation element of the algorithm).  

Less frequent larger hops from the base design, provide broader exploratory capacity.  MBH does not require 

an initial guess, and is generally started from a random initial base design. The MBH+NLP algorithm is 

summarized in Algorithm 1.6  

Multiple objective functions are available for selection in the inner loop.  Maximizing the final mass or 

minimizing the TOF are most typically applied.  Other possible objective functions include minimization of 

total mission ΔV, minimization or maximization of the launch or arrival date within bounded windows, and 

minimization of flight time, among other options. 

MULTI-OBJECTIVE OPTIMIZATION WITH PARAMETRIC SPREADING 

The inner loop provides an efficient means to global optimization for single objective function for both 

high- and low- thrust missions.  The outer loop, in turn, enables multi-objective optimization, allowing for 

variation in parameters such as TOF, launch date, arrival date, number of electric propulsion thrusters, and 

thruster type for any number of objectives.  The outer loop applies an EA-based multi-objective algorithm to 

define and steer the inner-loop, which is structured as a nested loop.  No user-defined initial guess is needed 

to start the optimization.  In this work, the EA-based outer loop is developed to not only provide a set of 

equally-optimal multi-objective solutions, but also to generate a representation of the sensitivity of the ob-

jectives to specified outer loop design variables. 

Multi-Objective Optimization Problem Statement 

With multiple optimization objectives, the aim of 

the optimization process is the generation of the Pa-

reto front of solutions. The Pareto front represents 

the set of equally-optimal, compromise solutions in 

which no improvement can be achieved in one ob-

jective without degrading at least one other objec-

tive.  In objective function space, the Pareto front 

forms a hyper-surface of equal dimension to the 

number of objectives. The Pareto front represents all 

possible Pareto-optimal solutions, and, in general, is 

not known a priori.  A multi-objective optimization 

routine must then generate numerous Pareto optimal 

solutions to represent the Pareto front and enable 

tradeoff decisions between the objectives.  The Pa-

reto front for a notional low-thrust trajectory optimi-

zation problem with the objectives to maximize final 

spacecraft mass and minimize time of flight is illus-

trated in Figure 5. 

The multi-objective optimization problem can be stated as follows: 
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where f(x) is a vector of objectives 
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x is a vector of design variables (with xL and xU lower and upper bounds), nobj is the scalar number of objec-

tives. Note that no constraints are incorporated in this multi-objective formulation.  The objective space is 

nobj-dimensional, and the objective functions are often coupled (containing the same design variables) and 

competing (the optimal solution in one objective is not the same optimal solution in the other objectives).  

Figure 5. Two-dimensional, non-dominated 

fronts of a multi-objective trajectory optimiza-

tion example. 
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The multi-objective optimization concept of domination allows for the comparison of a set of designs 

with multiple objectives, providing a measure of the relative quality of the design. When comparing two 

multi-objective designs, the design x1 dominates design x2 if: 
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That is, x1 dominates design x2 if, for all objectives, x1 is better than or equal to x2, and x1 outperforms x2 for 

at least one objective. In a direct comparison of two designs, if one design dominates another, that design is 

closer in proximity to the Pareto front. If neither design dominates the other, the designs are non-dominant 

to each other. Therefore, in a set of designs, the superior designs are those that are not dominated by any 

other design in the set, and are termed the non-dominated subset. It follows that any Pareto-optimal design is 

a member of the non-dominated subset associated with the entire feasible objective space and is located along 

the Pareto front. 

Traditional approaches to multi-objective optimization such as the weighted sum16 and ε-constraint17 

methods have several drawbacks. Many techniques necessitate solving many different optimization problems 

via independent runs. Classical multi-objective optimization approaches can also require tuning of special-

ized parameters to identify solutions that are Pareto-optimal. Furthermore, some techniques are not capable 

of producing Pareto fronts that are non-convex, and thus important optimal solutions may not be identified.  

To address some of the difficulties of multi-objective optimization, specialized genetic algorithms18 (GA) 

have been developed to generate representations of the Pareto front of solutions.19  

Design Space Clustering in Multi-Objective Evolutionary Algorithms 

A GA is a stochastic search and optimization technique that simulates biological natural selection and 

reproduction with the goal of identifying globally-optimal designs. This class of algorithm functions with a 

population of designs, and probabilistic transition rules are generally executed by three genetic operators: 

selection, crossover, and mutation. The operators are applied to a parent population to produce a new off-

spring generation that is better adapted to fitness landscape defined by the optimization formulation. A key 

advantage of GAs is that initial guesses are not required as the initial population is randomly defined. Addi-

tionally, without the need for gradient information, the genetic operators can effectively explore discrete, 

multimodal, and expansive design spaces. Furthermore, modifications to the simple GA can transform the 

algorithm into an effective multi-objective optimization scheme.  

GAs have the benefit of operating with an entire population of designs, and this population can be evolved 

towards the Pareto front in a single optimization run. The ability to operate on many designs simultaneously 

can enable improvements in efficiency and the capacity to generate a broad and uniform representation of 

the Pareto front versus methods that require many repetitions of single-objective optimization routines. An 

effective multi-objective approach developed by Deb called the non-dominated sorting genetic algorithm 

(NSGA) uses a genetic algorithm in which the fitness of an individual in the population is based on its relative 

proximity to the population’s non-dominated front.20 With a single measure defining the fitness of an indi-

vidual in the population, the genetic operators of the GA function to evolve the population toward the glob-

ally-optimal Pareto front in the same way that the population of a single-objective GA evolves toward the 

globally optimal solution.  A second-generation non-dominated sorting genetic algorithm, the NSGA-II, im-

proves upon the original NSGA.20 The NSGA-II incorporates mechanisms that ensure that elite individuals 

from the population are retained as the population evolves. Additionally, the NSGA-II employs strategies 

that aim to produce a uniform representation of designs along the Pareto front.   

Evolutionary preference in the base NSGA-II algorithm is provided to members of the population that 

are optimal in objective space.  As such, the algorithm is designed to effectively ignore regions of the design 

space that do not map to the optimal regions of objective space as the evolution proceeds.  In later generations 

of the GA, most individuals in the population have congregated in the optimal design space with the mutation 

operator providing exploration capacity outside of the design space clustering at a low rate.  While this strat-

egy is effective for generating the Pareto front, no mechanisms function to provide sensitivity of the objec-

tives to design variable variation in a parametric sense as the population is clustered.  The ability to spread 
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individuals in the population uniformly in design space such that both the Pareto front and a parameter trade 

are generated in a single run would be beneficial to the mission designer.  Such a capability would save time 

spent on developing subsequent sensitivity studies for key design variables. 

The clustering characteristic of EAs is illustrated in Figures Figure 6 and Figure 7 for a low-thrust asteroid 

boulder return mission with two objectives: maximize the boulder return mass and minimize the time of 

flight.  Figure 6 illustrates the representation of the Pareto front allowing for a mission designer to trade the 

two objectives and providing key insight such as the low cost associated with increasing the time of flight 

slightly to achieve significant gains in boulder return mass around flight times of 1700 days.  The red points 

are non-dominated and the blue are dominated.  Figure 7 shows the boulder return mass objective versus the 

Earth arrival date design variable.  The red diamonds correspond to the solutions in the final generation of 

the EA without employment of parametric spreading, and the blue line indicates the actual, parametric curve 

of return mass versus arrival date that can be used to fully understand the return mass versus arrival date 

sensitivity.  The arrival date design variables cluster around optimal date ranges instead of spreading out 

across the arrival date variable bounds without a spreading mechanism in the genetic algorithm.   

 

  

Figure 6. Two-dimensional representation of Pareto front for an asteroidal boulder return mission 

(maximize boulder mass and minimize time of flight) 
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Figure 7. Boulder return mass objective function values versus Earth arrival date design variable. 

Parametric Spreading Multi-Objective Genetic Algorithm 

To enable parametric spreading in the outer loop of EMTG, the NSGA-II algorithm is modified to en-

courage diversity in design space for each specified outer-loop parameter.  As with the base NSGA-II, a 

primary goal of the multi-objective optimization algorithm is still development of a representation of the 

Pareto front, however design-space diversity preservation mechanisms are incorporated in variations of the 

standard NSGA-II operators.  Specifically, the non-dominated sorting routine that ranks individuals of the 

population based on their relative proximity to the Pareto front is modified such that the ranking of an indi-

vidual also accounts for its relative proximity to other members in design space.  Additionally, the objective 

space crowding distance measure of the base NSGA-II is altered so that objective space and design space 

crowding is accounted for in the genetic operators that evolve the population. 

The base NSGA-II algorithm follows a process similar to a single-objective genetic algorithm with some 

key variations.  Initially, a random population of designs is generated, and objective function values are 

assigned.  The individuals are then processed through a selection operator that serves as a survival-of-the-

fittest function, to determine which individuals should be allowed to pass on to future generations of the GA.  

In a simple GA, the metric to determine the fittest individual is simply the single objective function value. In 

the NSGA-II, however, there are multiple objectives to account for.  The NSGA-II, instead, conducts a non-

dominated sorting of the individuals in the population to rank each individual according to its relative “dis-

tance” to the Pareto front.   

With a fitness assigned, members of the population most fit for the objective-space landscape are retained 

to form a new parent population, while those with the worst fitness are discarded Darwinianly.  In tournament 

selection, two individuals are selected randomly from the population and their fitness is compared.  The 

individual with the better fitness is maintained in the parent population.  If two individuals in the NSGA-II 

have the same fitness values, the crowding distance measure breaks the tie such that the more remote indi-

vidual in objective space is passed to the parent population.  Crowding distance in the base NSGA-II is 

assigned to each individual based on the perimeter of the hyperrectangle formed by the values of two adjacent 

designs in objective space.  This crowding-distance-based tournament selection is the first objective-space 

diversity preservation mechanism utilized by the NSGA-II.  After tournament selection, a parent population 

the size of the initial population has been formed. 
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The parent population is then passed to a crossover operator, which randomly combines parents in the 

population to generate a new offspring population with a mixture of design-space (genotypic) characteristics 

from the parent individuals.  The offspring population is randomly mutated with small variations in the design 

space encoding of some of the offspring individuals.  Objective function values are then assigned to the new 

offspring population.  In the EMTG outer-loop, objective function assignment is through optimization in the 

inner loop. 

To ensure the best individuals in the population are not lost from generation to generation, elitism can be 

employed. In a simple GA, the top performing individuals from the last generation replace the current gen-

eration’s worst fit individuals.  Elitism is not as straightforward in a multi-objective GA given that there is 

more than one objective.  To incorporate elitism in the NSGA-II, the new offspring population is combined 

with its originating parent population for a combined population that is twice the nominal population size.  

That is, if the original population is size N, the combined population is size 2N.  Again, non-dominated sorting 

is conducted to rank individuals in the combined population based on their non-dominated rank.  Subse-

quently, the objective-space crowding distance is assigned.  The best performing individuals in the combined 

population are then filtered into a new parent population of size N.  The individuals in the first non-dominated 

front are afforded first inclusion in the new parent population, and filling of the N available slots continues 

according the fitness rank until the remaining number slots available is less than the number of individuals 

in the next batch of individuals with the same fitness rank.  To fill the remaining available slots, the crowding 

distance of the individuals is again used to break any tie of equivalent fitness.  At this point, a new parent 

population is formed, and the GA and NSGA-II procedure repeats.  

One primary change to the base NSGA-

II for parametric spreading is a modifica-

tion of the non-dominated sorting routine.  

To promote individuals associated with the 

least-clustered regions of the design varia-

bles designated for parametric spreading, a 

parametric spreading sparsity metric is in-

cluded in the non-dominated assessment of 

the population.  In effect, the remoteness in 

design space for designated parametric 

spreading variables is treated as an addi-

tional optimization objective, and afforded 

the same evolutionary weight as any of the 

strict mission objectives.  Prior to perform-

ing a non-dominated sort, the entire popu-

lation is assigned a parametric sparsity in a 

similar fashion to the nominal objective-

space crowding distance assignment, as 

outlined in Algorithm 2.  A hyper-rectangle 

is formed in the parametric spreading de-

sign space about each individual such that 

the two neighboring individuals in design 

space form the vertices.  The parametric 

sparsity is then the sum of the sides of the 

rectangle, with each side normalized by the 

range in values of the corresponding spread 

variable across the population.  If a single 

variable is designated for parametric 

spreading, the parametric sparsity is the 

normalized difference in the variable val-

ues of the two neighboring individuals.  

Algorithm 2 Parametric sparsity assignment 

  for each spread variable v 

     Iv = sort(I, v)  (sort set I in ascending order to create set Iv) 

     L = Ø   (initialize solutions with variable v equal to min. value) 

     H = Ø   (initialize solutions with variable v equal to max. value) 

    for each solution i in Iv 

       if v = 0 then 

           

       if then 

           

       else if then 

           

       else 

           

     for each variable w except v 

        Lw = sort(L, v)   

        

        

        Hw = sort(H, w)   

        

        

   if spreading variable elitism = true 

      for each objective p 

              for each solution i in Iv   

             if  

                 

                 break 
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As an option, the user can specify 

that the algorithm apply elitism for 

each discrete design variable encod-

ing.  If parametric elitism is selected, 

the individual with the best objective 

function value for each objective and 

each discrete design variable value is 

assigned a high parametric sparsity to 

ensure it is not nominated during the 

non-dominated sort.  Care must be 

taken, however, when applying this 

option as the number of individuals 

provided elite status can be large and 

overwhelm the population if there are 

numerous objectives or a large num-

ber of possible parametric spreading 

discrete values.  Nonetheless, for ap-

propriate problems, the elitism option 

can provide stronger evolutionary 

pressure to parameter spreading at the 

cost of evolving the population less ef-

ficiently towards the Pareto front. 

The non-dominated sorting algo-

rithm for parametric spreading incorporates an additional general diversity preserving mechanism from the 

base NSGA-II to provide further exploration properties.  When evaluating domination, any duplicates of an 

individual in the population are automatically cataloged as dominated so that they do not reside in the first 

non-dominated front and receive the top fitness value.  This mechanism is beneficial for parametric spreading 

in the modified NSGA-II as top performing individuals can come to overwhelm the best non-dominated front 

in later generations.  Promoting duplicates of top-performing individuals is a strategic characteristic of the 

base NSGA-II, and is generally beneficial for algorithm efficiency when solely aiming for multi-objective 

optimization.  However, when additionally striving for a uniform parametric spread over the specified design 

variables, diversity in the population is of critical importance.  The non-dominated sorting for parametric 

spreading is detailed in Algorithm 3. 

Another fundamental departure from the base NSGA-II for parametric spreading is the crowding distance 

metric that is applied for breaking ties in the tournament selection operator and filling the final slots of the 

N-sized parent population.  As both objective space crowding and parametric crowding in design space is 

important in this implementation, a combined crowding distance metric is utilized to account for both con-

siderations.  The combined crowding distance provides diversity preservation by promoting the individuals 

in the population that reside in the least dense regions of objective and parametric space in an averaged sense.   

For determination of the combined crowding distance, first a modified objective-space crowding distance 

as defined in Reference 4 is assigned to each individual in the set of designs undergoing assignment.  Next, 

a parametric sparsity value is assigned to each individual in the set according to Algorithm 2. Individuals at 

the extreme values of the parametric spreading values in the set are assigned a large parametric sparsity.  If 

there is a group of individuals at the extreme values, only select members of the boundary group are preferred.  

Specifically, for each parametric spreading variable the individuals in the boundary group with the minimum 

and maximum values for the other parametric spreading variables are assigned large values.  Given that there 

can be a different number of spreading variables and objectives, the spreading variable component of the 

combined crowding distance is weighted according to ratio of designated spreading variables values to ob-

jectives.  This weighting gives equal preference to design and objective space spreading as the population 

evolves.  Finally, with both an objective-space crowding distance and parametric sparsity, the two values are 

combined into the single combined crowding distance metric. 

Algorithm 3 Non-dominated sort for parametric spreading 

  for each individual m in population P 

     Sm = Ø    (initialize set of solutions dominated by m) 

     cm = 0  (initialize number times m is dominated to 0) 

     for each individual n in population P 

       if (m dominates n for all objectives & parametric sparsity) then 

          Sm = Sm {n}  (add n to Sm) 

       else if (n dominates m for all objectives & parametric sparsity) then 

         cm = cm + 1  (increment when m is dominated) 

     if cm = 0 then 

       mrank = 1 (m is member of 1st non-dominated front) 

       F1 = F1 {m} 

  i = 1 

  while Fi  Ø 

     Q = Ø  (initialize temporary set Q to the empty set) 

     for each individual m in front Fi 

       for each individual n in Sm 

          cm = cm - 1   

          if cm = 0 then  

            nrank = i +1 

            Q = Q {n}  (individual n belongs to i+1 front) 

     i = i + 1 

     Fi = Q  (front i is set equivalent to set Q) 
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The full outer-loop algorithm is illustrated as a flow chart in Figure 8.  The parametric spreading multi-

objective GA generates problems for the refinement in the inner-loop MBH/NLP algorithm based on the 

objectives defined by the user and a menu of discrete design variables.  Trajectory variables in the outer loop 

such as launch date, arrival date and flight time are incorporated via a cap-and-optimize process, bounding 

the inner-loop trajectory problem.  Other outer-loop variables provide strict definitions for the mission such 

as the number of thrusters and the flyby sequence.  A variable flyby sequence is enabled by the null gene 

approach.6  When applying parametric spreading, population size is an important consideration.  A somewhat 

larger population size is recommended to accommodate the goal of generating the parametric curve for des-

ignated variables and a representation of the Pareto front with the same population. 

 

Figure 8: Parametric spreading, multi-objective algorithm based on the NSGA-II  
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EXAMPLES 

The parametric spreading outer loop is applied to two example problems: 1) a high-thrust, variable gravity 

assist trajectory to an elliptic Neptune orbit, and 2) a systems optimization problem for a low-thrust sample 

return from Deimos. 

High-Thrust Neptune Orbiter Mission Design 

The first example for a Neptune orbiter illustrates the multi-objective outer loop GA ability to generate a 

representation of the Pareto front for two objectives (maximize final mass and minimize TOF) while also 

incorporating parametric spreading for the launch date.  This example is representative of an initial design 

exploration study to determine mission feasibility.  A broad exploration of the trade space is sought, and thus 

a low-resolution parametric evaluation of launch date is defined with each inner-loop run able to search 

within 100-day launch period.  A six-year range of launch date periods are explored, and the outer loop can 

vary the flyby sequence with up to five gravity assists using any combination of Venus, Earth, Mars, Jupiter, 

and Saturn, as outlined in Table 1.  A Delta IV Heavy is used as the launch vehicle, and one deep space 

maneuver per phase is optimized within the inner-loop MGAnDSMs transcription.  Neptune orbit insertion 

is assumed to occur at a 3000-km altitude into an orbit with an eccentricity of 0.988, with the propellant for 

the insertion burn accounted in the optimized final mass; other trajectory details are listed in Table .  In the 

outer loop, an NSGA-II population of 256 is used with a 15% mutation rate to encourage population diversity 

as listed in Table 3.  Both a parametric spreading case and standard (i.e., no parametric spreading) case are 

evaluated for comparison.   

Table 1. Outer-loop Outer-Loop Design Variable Menu for Neptune Example 

 

 

 

 

The outer loop for both the parametric spreading case and the regular case is stopped after 100 genera-

tions. The outer loop execution cases are numerically independent and can be executed in parallel taking 2.5 

days on a 64 node compute cluster comprised of 2.6 GHz AMD Opteron cores.  The optimization is fully 

automated after initial problem definition with no human oversight, and no user-supplied initial guesses.  A 

representation of the two-dimensional Pareto front is shown in Figure 9.  The non-dominated members of the 

final population for the parametric spreading case are represented by diamonds whereas the standard outer-

loop case results are represented by an ‘X’.  Labeled on the delivered mass versus time of flight projection 

plot are mission sequence tags representing a sampling of the variety of sequences in the non-dominated set.  

Design Variable Value  Resolution 

Launch period open epoch [1/1/2024, 1/9/2030} 1 year 

Flyby body 
{Venus, Earth, Mars, Jupiter, Saturn, null, null, 

null, null, null, null} 
n/a 

Flight time [3200, 7000] days 200 days 

 

Description  Value 

Launch period 100 days 

Launch declination  [-28.5, 28.5] deg 

Launch vehicle curve Delta IV-H 

Chemical Isp 320 s 

Neptune arrival date 
Determined by 

 optimizer 

Neptune insertion orbit semi-major axis 2,346,770 km  

Nepturn insertion orbit eccentricity 0.98817 

Maximum number of DSMs per phase 1 

Inner-loop objective function Max: log10(final mass) 

Inner-loop run time 30 minutes 

 

Parameter Value 

Population size 256 

Mutation  

probability 
15% 

Objective  

Functions 

 log10(final mass), TOF  

 

Parametric spread-

ing variables 

Launch period open 

epoch 

 

Table 2. Trajectory assumptions for Neptune example 

Table 1. Outer-loop optimization pa-

rameters for Neptune Example 
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Mission sequences along the best non-dominated front include a mixture of flyby sequences: EN (direct), 

ESN, EEJN, EVEJN, EEMJN.  The best performing trajectory in terms of maximum arrival mass is an 

EEMJN with a 19.1 year TOF, delivering 5000 kg into the eccentric Neptune orbit.  The trajectory is plotted 

in Figure 10. 

Notably, the non-dominated fronts from the two cases are very similar. The parametric spreading non-

dominated front has a slightly more uniform representation of the Pareto front with optimal solutions at ~10.5 

and 12-year flight times, and the standard outer-loop algorithm identifying a slightly better performing solu-

tion with a 9.9 year TOF. The color of the solutions in Figure 9 correspond to launch date, and it is apparent 

that a narrow band of late launch dates are optimal for the longer TOFs.  Specifically, a mid-2029 opportunity 

for the EEMJN solutions and a late-2029 for EEJN and EVEJN solutions dominate the best front. 

 

Figure 9: Non-dominated front members in final generation for Neptune orbiter example 

 

 

Figure 10: Neptune trajectory with highest final mass (EEMJN) 

EEMJN 

EEJN 

EVEJN 

EEJN 

EEJN 

EEJN 

EMEJN 
ESN EN 

ESN 
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To evaluate performance of the parametric spreading functionality, the final mass is plotted against launch 

date for the entire population of both the parametric spreading case and standard case in Figure 11.  A line is 

plotted from the best final mass return for each discrete 100-day launch date period.  This line does not 

represent performance for individual dates, but rather the performance over the discrete outer-loop launch 

date period variable.  Note that solutions often tend to reside at the lower or upper bounds of the launch 

period.  In comparing the blue (parametric spreading) and orange (standard) lines, it is clear that the para-

metric spreading functionality enables identification of higher delivered mass for each launch date outside of 

the Pareto-optimal launch period in 2029 and two equivalent performing return masses in 2024 and 2026.  

For the launch period opening on 6/23/2029 the identified mass by the parametric spreading algorithm is 

nearly double that identified by the standard outer loop.   

The parametric spreading algorithm enables a mission designer better insight in the optimal sensitivity of 

the final mass to launch date.  This capacity is enabled by more diverse exploration in the parametric spread-

ing variable as indicated by the broader spread in launch date of blue diamonds versus orange ‘X’s in Figure 

11.  A histogram of the number individuals evaluated in the inner loop through all generations for each 

discrete launch period is shown in Figure 12.  The standard algorithm focuses its search on more runs on 

more optimal launch period, while the parametric spreading algorithm provides a more uniform exploration 

for the parametric spreading variable, while also balancing the goal of generating a Pareto front representation 

with sufficient exploitation of the identified optimal launch periods. 

The flight time versus launch date for the entire population with final masses greater than 200 kg is plotted 

in Figure 13.  For this objective both the parametric spreading algorithm and the standard outer loop produce 

a similar representation of the launch date parametric variation for many of the dates.  However, in seven of 

the possible 23 launch periods, the parametric spreading algorithm identifies a shorter TOF (up to one-year 

difference), while the standard algorithm identifies a better flight time for one of the 23 periods (i.e., launch 

period opening on 9/27/2026). 

 

 

Figure 11: Final mass versus launch date for entire population (blue: parametric spreading, or-

ange: standard algorithm) 
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Figure 12: Histogram of number inner-loop evaluations at each launch period for all generation 

 

 

Figure 13: Time of flight versus launch date for entire population (blue: parametric spreading, 

orange: standard algorithm) 

 

Low-Thrust Multi-Objective, Systems Optimization: Deimos Sample Return 

The second example illustrates the outer loop multi-objective systems optimizer to optimize four objec-

tives and produce a representation of the parametric sensitivity of the objectives to launch date variation.  The 

mission aims to return 100 kg of sample mass from Deimos using from one to three NEXT low-thrust engines, 

with the outer loop varying the Beginning-Of-Life (BOL) power at 1 AU in 2 kW increments from 6 kW to 
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22 kW.  Two discrete versions of the NEXT engine are included as outer-loop variables: a high-thrust version 

and a high-Isp version.  In this example, the dry mass of the spacecraft is not adjusted for the different hard-

ware configurations as it is assumed that the study is occurring before the base spacecraft hardware is known.  

The outer loop can, however, adjust dry mass according to the hardware selection from the outer-loop menu.  

The flyby sequence on both outbound and return legs is variable and the outer loop can select up to two 

flybys using Venus, Earth, or Mars.  A low-thrust rendezvous with Earth is executed on the return leg. 

The outer loop menu choices are listed in Table 4. The inner-loop and outer-loop optimization parameters 

are outlined in Table 5, and Table 6, respectively. The low-thrust capture spiral at Mars is modeled using 

Edelbaum’s constant-thrust equation21 from the radius of Mars’ sphere of influence to the orbital radius of 

Deimos for rendezvous, and vice versa for departure.  The algorithm is run for 2.5 days on a 64-core cluster 

to reach 150 generations. 

The parametric sensitivity of maximum dry mass versus launch date is illustrated in Figure 14..  A tighter 

resolution than the Neptune example is available for the launch date parametric spreading variable provided 

the 30.4 day (~one month) launch period.  Additionally, low-thrust trajectories often allow for greater launch 

date flexibility, but phasing for gravity assists is still critical in launch date performance.  All non-dominated 

solutions are shown in a 2D projection of the objective space in Figure 15 with the BOL power at 1 AU 

indicated by the color bar.   Recall that this representation of the Pareto front is four dimensional as minimi-

zation of BOL power, and the number of thrusters are also objectives.  These additional two objectives drive 

the equal-power bands below the best performing solutions in mass and time.  As with the Neptune example 

 

Design Variable Int. Value   Resolution 

Solar array size [0, 8] [6, 22] kW 2 kW 

Launch period open [0, 49] [1/1/2024, 1/29/2028] 30.4 days 

Flight time [0, 26] [1100, 3000] days 100 days 

Engine type [0, 1] {NEXT high-Isp, NEXT high-thrust} - 

Number of engines [0, 2] [1, 3] 1 

Outbound Flyby se-

quence 
[0,6] | [0,6] {Venus, Earth, Mars, null, null, null} 1 

Return Flyby sequence [0,6] | [0,6] {Venus, Earth, Mars, null, null, null} 1 

 

 

Description   Value 

Launch period  30.4 days 

Wait time at Deimos 
 [250, 350] 

days 

Min. spacecraft mass  500 kg 

Maximum launch C3 
 Atlas V 551 

limit 

Departure declination 

(EME2000)  

 [-28.5, 28.5] 

deg 

Thruster duty cycle  90% 

Max. number of SNOPT 

major iterations 

 
8000 

Power available  1/r2 

Spacecraft bus power  2 kW 

Propellant margin  none 

Inner-loop run time  12 minutes 

Inner-loop objective 
 Max. final 

mass 

 

Table 5: Inner-Loop Parameters for Deimos Ex-

ample 

Table 2: Deimos Sample Return Outer-Loop Menu 

Parameter Value 

Population size 180 

Mutation  

probability 
15% 

Objective  

Functions 

 log10(final mass), TOF  

 

Parametric spread-

ing variables 

Launch period open 

epoch (30.4 day period) 

 

Table 6: Outer-Loop Optimization 

Parameters 
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both a representation of the Pareto front is achieved while also providing the parametric sensitivity of the 

objectives to launch date. 

 

 

Figure 14: Dry mass versus launch date for all generations, Deimos example 

 

 

Figure 15: Best non-dominated front for Deimos example colorized by BOL power (kw) at 1AU 

kw 

MULTI-OBJECTIVE VISUALIZATION 

A key challenge in multi-objective trajectory and systems optimization is visualizing the rich, multi-di-

mensional solution space and its relationship to an expansive and complex design space.  To enable a better 

understanding of the solution set, visualization tooling is developed to enable illustration of solution and 

design space relationships and ease communication of the results to other team members.  In the visualization 

tooling, multi-dimensional, Pareto-optimal solutions and the dominated solutions retained for parametric 
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studies are plotted in a variety of plot combinations, dynamically mapping the design and solution space 

relationships.  Additionally, the thousands of solutions evolved throughout the generations of the genetic 

algorithm can provide further insight into the problem.  The visualization interface allows for viewing of both 

2D and 3D color coded data sets, while providing easy zooming and user-specified filtering.  The user is able 

to interact with any data point in the trade space, linking detailed information about the particular solution, 

both hardware and trajectory information, as well as trajectory plots. 

 

 

Figure 16: Multi-objective optimization data vis-

ualization, dynamically plotted and colorized 

gene parameters in 3D 

 

Figure 17:  Final generation 100 stacked into 

same optimization data as Figure 16 to show  

Figure 16 displays the Neptune orbiter example optimization data when filtered for all items where Gene0  

(Launch window open date) is ranked 0 (Best).  The X axis is a numerically scaled Delivered Mass to Orbit 

(kg). The Y axis is flight time (days). The Z axis is the primary inner loop decision variable, in this scenario 

the Launch Window open date. The color scheme selected in these views is a color wheel style where red maps 

to the lowest value of the launch window open date and dark purple maps to the highest such value.  This 

effectively connects the color range to the Z axis which is useful visually but can be changed using the tool. 

Figure 17 shows the same primary data set as Figure 16 but with the final generation 100 data stacked on top. 

This stacking is facilitated through a drag and drop interface and allows the user to see multiple evolutionary 

generations in concert. 

CONCLUSION 

To enable simultaneous optimization of multiple objectives and generation of objective function sensi-

tivity to key design variables, a multi-objective genetic algorithm that incorporates parametric spreading is 

presented.  The parametric spreading algorithm is incorporated in the outer loop of EMTG, and operates in 

concert with the MBH+NLP inner-loop to solve hybrid optimal control problems.  The user can specify any 

number of objectives and any number outer-loop design variables for parametric spreading.  The parametric 

spreading algorithm generates a representation of the Pareto front and enables evaluation of parametric sen-

sitivity to the specified design variables.  The parametric spreading algorithm is based on the NSGA-II, and 

incorporates additional diversity preservation mechanisms to balance clustering in design space while also 

maintaining strong exploratory capability in the parametric spreading variable.  The algorithm has broad 

applicability to high- or low-thrust interplanetary design problems.  A variety of mission types can be ex-

plored including multi-flyby scenarios, and optimization of spacecraft systems variables can also be incor-

porated.   
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