168 research outputs found

    Vertically Integrated Projects (VIP) Programs: Multidisciplinary Projects with Homes in Any Discipline

    Get PDF
    A survey of papers in the ASEE Multidisciplinary Engineering Division over the last three years shows three main areas of emphasis: individual courses; profiles of specific projects; and capstone design courses. However, propagating multidisciplinary education across the vast majority of disciplines offered at educational institutions with varying missions requires models that are independent of the disciplines, programs, and institutions in which they were originally conceived. Further, models that can propagate must be cost effective, scalable, and engage and benefit participating faculty. Since 2015, a consortium of twenty-four institutions has come together around one such model, the Vertically Integrated Projects (VIP) Program. VIP unites undergraduate education and faculty research in a team-based context, with students earning academic credits toward their degrees, and faculty and graduate students benefitting from the design/discovery efforts of their multidisciplinary teams. VIP integrates rich student learning experiences with faculty research, transforming both contexts for undergraduate learning and concepts of faculty research as isolated from undergraduate teaching. It provides a rich, cost-effective, scalable, and sustainable model for multidisciplinary project-based learning. (1) It is rich because students participate multiple years as they progress through their curriculum; (2) It is cost-effective since students earn academic credit instead of stipends; (3) It is scalable because faculty can work with teams of students instead of individual undergraduate research fellows, and typical teams consist of fifteen or more students from different disciplines; (4) It is sustainable because faculty benefit from the research and design efforts of their teams, with teams becoming integral parts of their research. While VIP programs share key elements, approaches and implementations vary by institution. This paper shows how the VIP model works across sixteen different institutions with different missions, sizes, and student profiles. The sixteen institutions represent new and long-established VIP programs, varying levels of research activity, two Historically Black Colleges and Universities (HBCUs), a Hispanic-Serving Institution (HSI), and two international universities1. Theses sixteen profiles illustrate adaptability of the VIP model across different academic settings

    Cultural connections: The Role of the Arts and Humanities in Competitiveness and Local Development

    Get PDF
    This report considers how the arts and cultural institutions contribute to the appeal of place. Cultural institutions are a prominent part of UK society – and many have a rich and long heritage. The impact of such institutions has often been evaluated in terms of engagement and participation or on the direct economic impact of cultural institutions. This study primarily focuses on the wider role of cultural institutions in their local economies; their innovative activities; how they connect to other local organisations such as universities; and how they collaborate with academics from the Arts and Humanities

    Ecosystem-level effects of re-oligotrophication and N:P imbalances in rivers and estuaries on a global scale

    Get PDF
    ABSTRACT: Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two-three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides hytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the otherhand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.This work was supported by a grant from the U.S. National Science Foundation (#DBI-1639145) to the National Socio-Environmental Synthesis Center (Rivershift Project). The work was also financially supported by the Catalan Government through the funding grant ACCIÓ-Eurecat (Project AquaSCI-2022)

    Neural network-based emulation of interstellar medium models

    Full text link
    The interpretation of observations of atomic and molecular tracers in the galactic and extragalactic interstellar medium (ISM) requires comparisons with state-of-the-art astrophysical models to infer some physical conditions. Usually, ISM models are too time-consuming for such inference procedures, as they call for numerous model evaluations. As a result, they are often replaced by an interpolation of a grid of precomputed models. We propose a new general method to derive faster, lighter, and more accurate approximations of the model from a grid of precomputed models. These emulators are defined with artificial neural networks (ANNs) designed and trained to address the specificities inherent in ISM models. Indeed, such models often predict many observables (e.g., line intensities) from just a few input physical parameters and can yield outliers due to numerical instabilities or physical bistabilities. We propose applying five strategies to address these characteristics: 1) an outlier removal procedure; 2) a clustering method that yields homogeneous subsets of lines that are simpler to predict with different ANNs; 3) a dimension reduction technique that enables to adequately size the network architecture; 4) the physical inputs are augmented with a polynomial transform to ease the learning of nonlinearities; and 5) a dense architecture to ease the learning of simple relations. We compare the proposed ANNs with standard classes of interpolation methods to emulate the Meudon PDR code, a representative ISM numerical model. Combinations of the proposed strategies outperform all interpolation methods by a factor of 2 on the average error, reaching 4.5% on the Meudon PDR code. These networks are also 1000 times faster than accurate interpolation methods and require ten to forty times less memory. This work will enable efficient inferences on wide-field multiline observations of the ISM

    Gas kinematics around filamentary structures in the Orion B cloud

    Get PDF
    Context. Understanding the initial properties of star-forming material and how they affect the star formation process is key. From an observational point of view, the feedback from young high-mass stars on future star formation properties is still poorly constrained. Aims. In the framework of the IRAM 30m ORION-B large program, we obtained observations of the translucent (2 ≤ AV < 6 mag) and moderately dense gas (6 ≤ AV < 15 mag), which we used to analyze the kinematics over a field of 5 deg2 around the filamentary structures. Methods. We used the Regularized Optimization for Hyper-Spectral Analysis (ROHSA) algorithm to decompose and de-noise the C 18 O(1−0) and 13CO(1−0) signals by taking the spatial coherence of the emission into account. We produced gas column density and mean velocity maps to estimate the relative orientation of their spatial gradients. Results. We identified three cloud velocity layers at different systemic velocities and extracted the filaments in each velocity layer. The filaments are preferentially located in regions of low centroid velocity gradients. By comparing the relative orientation between the column density and velocity gradients of each layer from the ORION-B observations and synthetic observations from 3D kinematic toy models, we distinguish two types of behavior in the dynamics around filaments: (i) radial flows perpendicular to the filament axis that can be either inflows (increasing the filament mass) or outflows and (ii) longitudinal flows along the filament axis. The former case is seen in the Orion B data, while the latter is not identified. We have also identified asymmetrical flow patterns, usually associated with filaments located at the edge of an H II region. Conclusions. This is the first observational study to highlight feedback from H II regions on filament formation and, thus, on star formation in the Orion B cloud. This simple statistical method can be used for any molecular cloud to obtain coherent information on the kinematics

    Deep learning denoising by dimension reduction: Application to the ORION-B line cubes

    Get PDF
    Context. The availability of large bandwidth receivers for millimeter radio telescopes allows the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain much information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with inhomogenous signal-to-noise ratio (SNR) are major challenges for consistent analysis and interpretation.Aims. We search for a denoising method of the low SNR regions of the studied data cubes that would allow to recover the low SNR emission without distorting the signals with high SNR.Methods. We perform an in-depth data analysis of the 13 CO and C 17 O (1 -- 0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30m telescope. We analyse the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This allows us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13 CO (1 -- 0) cube, we compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state of the art procedure for data line cubes.Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase of the SNR in voxels with weak signal, while preserving the spectral shape of the data in high SNR voxels.Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems a promising avenue. In addition

    Magnesium nebulization utilization in management of pediatric asthma (MagNUM PA) trial: study protocol for a randomized controlled trial

    Full text link
    corecore