125 research outputs found

    HEAO-1 observations of gamma ray bursts

    Get PDF
    A search of data from the High Energy X-Ray and Low Energy Gamma Ray Experiment on HEAO-1 uncovered 14 gamma ray bursts. Nine of these events are reported for the first tiome. Except for the faintest events, all of the bursts detected by this experiment have been measured above an MeV, thereby confirming the hard spectral character of gamma ray burst spectra reported by SMM. Results give a burst rate of at least 105 per year above 6 times 10 to the minus 7th power ergs, which is consistent with previous measurements of burst frequency

    Incidence and Sequelae of Prosthesis-Patient Mismatch in Transcatheter Versus Surgical Valve Replacement in High-Risk Patients With Severe Aortic Stenosis A PARTNER Trial Cohort-A Analysis

    Get PDF
    AbstractBackgroundLittle is known about the incidence of prosthesis-patient mismatch (PPM) and its impact on outcomes after transcatheter aortic valve replacement (TAVR).ObjectivesThe objectives of this study were: 1) to compare the incidence of PPM in the TAVR and surgical aortic valve replacement (SAVR) randomized control trial (RCT) arms of the PARTNER (Placement of AoRTic TraNscathetER Valves) I Trial cohort A; and 2) to assess the impact of PPM on regression of left ventricular (LV) hypertrophy and mortality in these 2 arms and in the TAVR nonrandomized continued access (NRCA) registry cohort.MethodsThe PARTNER Trial cohort A randomized patients 1:1 to TAVR or bioprosthetic SAVR. Postoperative PPM was defined as absent if the indexed effective orifice area (EOA) was >0.85 cm2/m2, moderate if the indexed EOA was ≄0.65 but ≀0.85 cm2/m2, or severe if the indexed EOA was <0.65 cm2/m2. LV mass regression and mortality were analyzed using the SAVR-RCT (n = 270), TAVR-RCT (n = 304), and TAVR-NRCA (n = 1,637) cohorts.ResultsThe incidence of PPM was 60.0% (severe: 28.1%) in the SAVR-RCT cohort versus 46.4% (severe: 19.7%) in the TAVR-RCT cohort (p < 0.001) and 43.8% (severe: 13.6%) in the TAVR-NRCA cohort. In patients with an aortic annulus diameter <20 mm, severe PPM developed in 33.7% undergoing SAVR compared with 19.0% undergoing TAVR (p = 0.002). PPM was an independent predictor of less LV mass regression at 1 year in the SAVR-RCT (p = 0.017) and TAVR-NRCA (p = 0.012) cohorts but not in the TAVR-RCT cohort (p = 0.35). Severe PPM was an independent predictor of 2-year mortality in the SAVR-RCT cohort (hazard ratio [HR]: 1.78; p = 0.041) but not in the TAVR-RCT cohort (HR: 0.58; p = 0.11). In the TAVR-NRCA cohort, severe PPM was not a predictor of 1-year mortality in all patients (HR: 1.05; p = 0.60) but did independently predict mortality in the subset of patients with no post-procedural aortic regurgitation (HR: 1.88; p = 0.02).ConclusionsIn patients with severe aortic stenosis and high surgical risk, PPM is more frequent and more often severe after SAVR than TAVR. Patients with PPM after SAVR have worse survival and less LV mass regression than those without PPM. Severe PPM also has a significant impact on survival after TAVR in the subset of patients with no post-procedural aortic regurgitation. TAVR may be preferable to SAVR in patients with a small aortic annulus who are susceptible to PPM to avoid its adverse impact on LV mass regression and survival. (The PARTNER Trial: Placement of AoRTic TraNscathetER Valve Trial; NCT00530894

    High Post-Capture Survival for Sharks, Rays and Chimaeras Discarded in the Main Shark Fishery of Australia?

    Get PDF
    Most sharks, rays and chimaeras (chondrichthyans) taken in commercial fisheries are discarded (i.e. returned to the ocean either dead or alive). Quantifying the post-capture survival (PCS) of discarded species is therefore essential for the improved management and conservation of this group. For all chondrichthyans taken in the main shark fishery of Australia, we quantified the immediate PCS of individuals reaching the deck of commercial shark gillnet fishing vessels and applied a risk-based method to semi-quantitatively determine delayed and total PCS. Estimates of immediate, delayed and total PCS were consistent, being very high for the most commonly discarded species (Port Jackson shark, Australian swellshark, and spikey dogfish) and low for the most important commercial species (gummy and school sharks). Increasing gillnet soak time or water temperature significantly decreased PCS. Chondrichthyans with bottom-dwelling habits had the highest PCS whereas those with pelagic habits had the lowest PCS. The risk-based approach can be easily implemented as a standard practice of on-board observing programs, providing a convenient first-step assessment of the PCS of all species taken in commercial fisheries

    Survival estimates of bycatch individuals discarded from bivalve dredges

    Get PDF
    The fate of released bycatch is an issue of great interest for fisheries research and management. Survival experiments were carried out to assess the survival capacity of animals damaged and discarded during clam dredging operations. Three common bycatch species, two fish (Trachinus vipera; Dicologlossa cuneata) and one crab (Polybius henslowii), were collected during the sorting of catches from a commercial dredging boat. An arbitrary score scale was used to quantify the type and extent of damage to the organisms. Onboard, damaged individuals were placed in tanks containing seawater which were subsequently transferred to the laboratory. Survival experiments were conducted during the subsequent 48h. D. cuneata exhibited the lowest mortality after 48h (54%), followed by P. henslowii (65%) and T. vipera (81%). Despite the magnitude of the percentage mortalities determined, the average number of individuals estimated to die during a 15 minutes tow (standard commercial fishing time) was relatively small: 1.2, 3.24 and 11 for D. cuneata, T. vipera and P. henslowii, respectively. Nevertheless, when these figures are extrapolated to cover all the dredging fleet the impact of this practice on the populations of the species studied can be significant, particulary for D. cuneata

    Reproductive Strategy of the Giant Electric Ray in the Southern Gulf of California

    Get PDF
    The objective of the present study was to describe and characterize macroscopic and microscopic aspects of the reproductive biology of the Giant Electric Ray Narcine entemedor, a viviparous elasmobranch targeted by commercial fishers in Mexico. A total of 305 individual rays were captured (260 females, 45 males); all males were sexually mature. The median size at maturity for females was estimated to be 58.5 cm TL, the median size at pregnancy was 63.7 cm TL, and the median size at maternity was 66.2 cm TL. The range of ovarian follicles recorded per female was 1–69; the maximum ovarian fecundity of fully grown vitellogenic oocytes was 17, and uterine fecundity ranged from 1 to 24 embryos per female. The lengths of the oblong ovarian follicles varied significantly among months, and the largest ovarian follicles were found in July, August, and September. Median embryo size was largest in August, and the size at birth was between 12.4 and 14.5 cm TL. Histological evidence of secretions from the glandular tissue of the uterine villi indicate that this species probably has limited histotrophy as a reproductive mode. Vitellogenesis in the ovary occurred synchronously with gestation in the uterus. The Giant Electric Ray has a continuous annual reproductive cycle; a period of ovulation occurs between May and September and two peaks of parturition, one in January and one in August, occur, suggesting that embryonic diapause occurs in some individuals. These results provide useful information for the management of this important commercial species in Bahía de La Paz, Mexico, and will allow possible modification of the current Mexican regulations to enable better protection of this species

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., GonzĂĄlez Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-MacĂ­as, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a CiĂȘncia e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)
    • 

    corecore