69 research outputs found

    Equivariant cohomology over Lie groupoids and Lie-Rinehart algebras

    Get PDF
    Using the language and terminology of relative homological algebra, in particular that of derived functors, we introduce equivariant cohomology over a general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally trivial Lie groupoid in terms of suitably defined monads (also known as triples) and the associated standard constructions. This extends a characterization of equivariant de Rham cohomology in terms of derived functors developed earlier for the special case where the Lie groupoid is an ordinary Lie group, viewed as a Lie groupoid with a single object; in that theory over a Lie group, the ordinary Bott-Dupont-Shulman-Stasheff complex arises as an a posteriori object. We prove that, given a locally trivial Lie groupoid G and a smooth G-manifold f over the space B of objects of G, the resulting G-equivariant de Rham theory of f boils down to the ordinary equivariant de Rham theory of a vertex manifold relative to the corresponding vertex group, for any vertex in the space B of objects of G; this implies that the equivariant de Rham cohomology introduced here coincides with the stack de Rham cohomology of the associated transformation groupoid whence this stack de Rham cohomology can be characterized as a relative derived functor. We introduce a notion of cone on a Lie-Rinehart algebra and in particular that of cone on a Lie algebroid. This cone is an indispensable tool for the description of the requisite monads.Comment: 47 page

    Poisson homology of r-matrix type orbits I: example of computation

    Full text link
    In this paper we consider the Poisson algebraic structure associated with a classical rr-matrix, i.e. with a solution of the modified classical Yang--Baxter equation. In Section 1 we recall the concept and basic facts of the rr-matrix type Poisson orbits. Then we describe the rr-matrix Poisson pencil (i.e the pair of compatible Poisson structures) of rank 1 or CPnCP^n-type orbits of SL(n,C)SL(n,C). Here we calculate symplectic leaves and the integrable foliation associated with the pencil. We also describe the algebra of functions on CPnCP^n-type orbits. In Section 2 we calculate the Poisson homology of Drinfeld--Sklyanin Poisson brackets which belong to the rr-matrix Poisson family

    LL_\infty-interpretation of a classification of deformations of Poisson structures in dimension three

    Full text link
    We give an LL_\infty-interpretation of the classification, obtained in [AP2], of the formal deformations of a family of exact Poisson structures in dimension three. We indeed obtain again the explicit formulas for all the formal deformations of these Poisson structures, together with a classification in the generic case, by constructing a suitable quasi-isomorphism between two LL_\infty-algebras, which are associated to these Poisson structures.Comment: 31 pages, Added references, minor change

    Cohomology of skew-holomorphic Lie algebroids

    Get PDF
    We introduce the notion of skew-holomorphic Lie algebroid on a complex manifold, and explore some cohomologies theories that one can associate to it. Examples are given in terms of holomorphic Poisson structures of various sorts.Comment: 16 pages. v2: Final version to be published in Theor. Math. Phys. (incorporates only very minor changes

    On the geometric quantization of twisted Poisson manifolds

    Full text link
    We study the geometric quantization process for twisted Poisson manifolds. First, we introduce the notion of Lichnerowicz-twisted Poisson cohomology for twisted Poisson manifolds and we use it in order to characterize their prequantization bundles and to establish their prequantization condition. Next, we introduce a polarization and we discuss the quantization problem. In each step, several examples are presented

    Morita base change in Hopf-cyclic (co)homology

    Full text link
    In this paper, we establish the invariance of cyclic (co)homology of left Hopf algebroids under the change of Morita equivalent base algebras. The classical result on Morita invariance for cyclic homology of associative algebras appears as a special example of this theory. In our main application we consider the Morita equivalence between the algebra of complex-valued smooth functions on the classical 2-torus and the coordinate algebra of the noncommutative 2-torus with rational parameter. We then construct a Morita base change left Hopf algebroid over this noncommutative 2-torus and show that its cyclic (co)homology can be computed by means of the homology of the Lie algebroid of vector fields on the classical 2-torus.Comment: Final version to appear in Lett. Math. Phy

    Modular classes of skew algebroid relations

    Full text link
    Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.Comment: 20 page

    Noncommutative homotopy algebras associated with open strings

    Full text link
    We discuss general properties of AA_\infty-algebras and their applications to the theory of open strings. The properties of cyclicity for AA_\infty-algebras are examined in detail. We prove the decomposition theorem, which is a stronger version of the minimal model theorem, for AA_\infty-algebras and cyclic AA_\infty-algebras and discuss various consequences of it. In particular it is applied to classical open string field theories and it is shown that all classical open string field theories on a fixed conformal background are cyclic AA_\infty-isomorphic to each other. The same results hold for classical closed string field theories, whose algebraic structure is governed by cyclic LL_\infty-algebras.Comment: 92 pages, 16 figuers; based on Ph.D thesis submitted to Graduate School of Mathematical Sciences, Univ. of Tokyo on January, 2003; v2: explanation improved, references added, published versio
    corecore