Using the language and terminology of relative homological algebra, in
particular that of derived functors, we introduce equivariant cohomology over a
general Lie-Rinehart algebra and equivariant de Rham cohomology over a locally
trivial Lie groupoid in terms of suitably defined monads (also known as
triples) and the associated standard constructions. This extends a
characterization of equivariant de Rham cohomology in terms of derived functors
developed earlier for the special case where the Lie groupoid is an ordinary
Lie group, viewed as a Lie groupoid with a single object; in that theory over a
Lie group, the ordinary Bott-Dupont-Shulman-Stasheff complex arises as an a
posteriori object. We prove that, given a locally trivial Lie groupoid G and a
smooth G-manifold f over the space B of objects of G, the resulting
G-equivariant de Rham theory of f boils down to the ordinary equivariant de
Rham theory of a vertex manifold relative to the corresponding vertex group,
for any vertex in the space B of objects of G; this implies that the
equivariant de Rham cohomology introduced here coincides with the stack de Rham
cohomology of the associated transformation groupoid whence this stack de Rham
cohomology can be characterized as a relative derived functor. We introduce a
notion of cone on a Lie-Rinehart algebra and in particular that of cone on a
Lie algebroid. This cone is an indispensable tool for the description of the
requisite monads.Comment: 47 page