134 research outputs found

    Automated In-Process Cure Monitoring of Composite Laminates Using a Guided Wave-Based System with High-Temperature Piezoelectric Transducers

    Get PDF
    An in-process cure monitoring technique based on guided wave concept for carbon fiber reinforced polymer (CFRP) composites was developed. Key parameters including physical properties (viscosity and degree of cure) and state transitions (gelation and vitrification) during the cure cycle were clearly identified experimentally from the amplitude and group velocity of guided waves, validated via the semi-empirical cure process modeling software RAVEN. Using the newly developed cure monitoring system, an array of high-temperature piezoelectric transducers acting as an actuator and sensors were employed to excite and sense guided wave signals, in terms of voltage, through unidirectional composite panels fabricated from Hexcel IM7/8552 prepreg during cure in an oven. Average normalized peak voltage, which pertains to the wave amplitude, was selected as a metric to describe the guided waves phenomena throughout the entire cure cycle. During the transition from rubbery to glassy state, the group velocity of the guided waves was investigated for connection with degree of cure, Tg, and mechanical properties. This work demonstrated the feasibility of in-process cure monitoring and continued progress toward a closed-loop process control to maximize composite part quality and consistency

    Design of an Automated Ultrasonic Scanning System for In-Situ Composite Cure Monitoring and Defect Detection

    Get PDF
    The preliminary design and development of an automated ultrasonic scanning system for in-situ composite cure monitoring and defect detection in the high temperature environment of an oven was completed. This preliminary design is a stepping stone to deployment in the high temperature and high pressure environment of an autoclave, the primary cure method of aerospace grade thermoset composites. Cure monitoring with real-time defect detection during the process could determine when defects form and how they move. In addition, real-time defect detection during cure could assist validating physics-based process models for predicting defects at all stages of the cure cycle. A physics-based process model for predicting porosity and fiber waviness originating during cure is currently under development by the NASA Advanced Composites Project (ACP). For the design, an ultrasonic contact scanner is enclosed in an insulating box that is placed inside an oven during cure. Throughout the cure cycle, the box is nitrogen-cooled to approximately room temperature to maintain a standard operating environment for the scanner. The composite part is mounted on the outside of the box in a vacuum bag on the build/tool plate. The build plate is attached to the bottom surface of the box. The scanner inspects the composite panel through the build plate, tracking the movement of defects introduced during layup and searching for new defects that may form during cure. The focus of this paper is the evaluation and selection of the build plate material and thickness. The selection was based on the required operating temperature of the scanner, the cure temperature of the composite material, thermal conductivity models of the candidate build plates, and a series of ultrasonic attenuation tests. This analysis led to the determination that a 63.5 mm thick build plate of borosilicate glass would be utilized for the system. The borosilicate glass plate was selected as the build plate material due to the low ultrasonic attenuation it demonstrated, its ability to efficiently insulate the scanner while supporting an elevated temperature on the part side of the plate, and the availability of a 63.5 mm thick plate without the need for lamination

    Adhesive Joining of Composite Laminates Using Epoxy Resins with Stoichiometric Offset

    Get PDF
    Polymer matrix composites are used in high performance structures because of their excellent specific strength, toughness and stiffness along the fiber. To realize the full performance advantages of composites, complex, built-up structures must be assembled with adhesive, but uncertainty in bond strength requires manufacturers to install bolts or other crack arrest features to ensure safety in critical applications. The inherent uncertainty in adhesive bonds stems from the material discontinuity at the composite-to-adhesive interfaces, which are susceptible to contamination. In contrast, composites made by co-curing, although limited in size and complexity, result in predictable structures that may be certifiable for commercial aviation with reduced dependence on redundant load paths.1 The pro-posed technology uses a stoichiometric offset of the hardener-to-epoxy ratio on the faying surfaces of laminates. Assembly of the components in a subsequent secondary-co-cure process results in a joint with no material discontinuities

    Reliable Bonding of Composite Laminates Using Reflowable Epoxy Resins

    Get PDF
    Epoxy matrix composites assembled with adhesives maximize the performance of aerospace structures, but the possibility of forming weak bonds requires the installation of redundant fasteners, which add weight and manufacturing cost. Co-cured joints (e.g. unitized composite structures) are immune to weak bonds because the uncured resin undergoes diffusion and mixing through the joint. A means of co-curing complex structures may reduce the need for redundant fasteners in bondlines. To this end, NASA started the AERoBOND project to develop novel joining materials to enable a secondary-co-cure assembly process. Aerospace epoxy resin systems reformulated with offset stoichiometry prevented the resin from advancing beyond the gel point during a conventional autoclave cure cycle up to 180 C. The offset resins were applied to the joining surfaces of laminate preforms as prepreg. Two surfaces with complimentary offset resins were joined using conventional secondary bonding techniques. Preliminary efforts have indicated that the resulting joint has no discernable interface and appears as a conventional co-cured laminate under optical magnification. This report will discuss the initial work performed regarding formulation of the epoxy resin system using calorimetry, rheology, and mechanical testing

    Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    Get PDF
    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered waves are in phase over the overlap boundaries

    The geography of recent genetic ancestry across Europe

    Get PDF
    The recent genealogical history of human populations is a complex mosaic formed by individual migration, large-scale population movements, and other demographic events. Population genomics datasets can provide a window into this recent history, as rare traces of recent shared genetic ancestry are detectable due to long segments of shared genomic material. We make use of genomic data for 2,257 Europeans (the POPRES dataset) to conduct one of the first surveys of recent genealogical ancestry over the past three thousand years at a continental scale. We detected 1.9 million shared genomic segments, and used the lengths of these to infer the distribution of shared ancestors across time and geography. We find that a pair of modern Europeans living in neighboring populations share around 10-50 genetic common ancestors from the last 1500 years, and upwards of 500 genetic ancestors from the previous 1000 years. These numbers drop off exponentially with geographic distance, but since genetic ancestry is rare, individuals from opposite ends of Europe are still expected to share millions of common genealogical ancestors over the last 1000 years. There is substantial regional variation in the number of shared genetic ancestors: especially high numbers of common ancestors between many eastern populations likely date to the Slavic and/or Hunnic expansions, while much lower levels of common ancestry in the Italian and Iberian peninsulas may indicate weaker demographic effects of Germanic expansions into these areas and/or more stably structured populations. Recent shared ancestry in modern Europeans is ubiquitous, and clearly shows the impact of both small-scale migration and large historical events. Population genomic datasets have considerable power to uncover recent demographic history, and will allow a much fuller picture of the close genealogical kinship of individuals across the world.Comment: Full size figures available from http://www.eve.ucdavis.edu/~plralph/research.html; or html version at http://ralphlab.usc.edu/ibd/ibd-paper/ibd-writeup.xhtm

    How to detect fluctuating order in the high-temperature superconductors

    Full text link
    We discuss fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies for extracting information concerning such local order from experiments are derived with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems - the exactly solvable one dimensional electron gas with an impurity, and a weakly-interacting 2D electron gas. We extensively review experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies. We adduce evidence that stripe correlations are widespread in the cuprates. Finally, we compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi liquid state, and strong coupling, in which the magnetism is associated with well defined localized spins, and stripes are viewed as a form of micro-phase separation. We present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.Comment: 43 pages, 11 figures, submitted to RMP; extensively revised and greatly improved text; one new figure, one new section, two new appendices and more reference

    The effect of Young's modulus on the neuronal differentiation of mouse embryonic stem cells

    Get PDF
    There is substantial evidence that cells produce a diverse response to changes in ECM stiffness depending on their identity. Our aim was to understand how stiffness impacts neuronal differentiation of embryonic stem cells (ESC's), and how this varies at three specific stages of the differentiation process. In this investigation, three effects of stiffness on cells were considered; attachment, expansion and phenotypic changes during differentiation. Stiffness was varied from 2 kPa to 18 kPa to finally 35 kPa. Attachment was found to decrease with increasing stiffness for both ESC's (with a 95% decrease on 35 kPa compared to 2 kPa) and neural precursors (with a 83% decrease on 35 kPa). The attachment of immature neurons was unaffected by stiffness. Expansion was independent of stiffness for all cell types, implying that the proliferation of cells during this differentiation process was independent of Young's modulus. Stiffness had no effect upon phenotypic changes during differentiation for mESC's and neural precursors. 2 kPa increased the proportion of cells that differentiated from immature into mature neurons. Taken together our findings imply that the impact of Young's modulus on attachment diminishes as neuronal cells become more mature. Conversely, the impact of Young's modulus on changes in phenotype increased as cells became more mature

    Early childhood adversities and trajectories of psychiatric problems in adoptees: Evidence for long lasting effects

    Get PDF
    The aim of the present study is to investigate whether early childhood adversities determine the longitudinal course of psychiatric problems from childhood to adulthood; in particular if the impact of early maltreatment on psychopathology decreases as time passes. A sample of 1,984 international adoptees was followed (955 males and 1029 females; adopted at the mean age of 29 months). Parents provided information about abuse, neglect and numbe
    • …
    corecore