6,113 research outputs found
Dimensional analysis using toric ideals: Primitive invariants
© 2014 Atherton et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units M, L, T etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer K matrix from the initial integer A matrix holding the exponents for the derived quantities. The K matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by A. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of K, is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.The third author received funding from Leverhulme Trust Emeritus Fellowship (1-SST-U445) and United Kingdom EPSRC grant: MUCM EP/D049993/1
Hysteresis loops of magnetic thin films with perpendicular anisotropy
We model the magnetization of quasi two-dimensional systems with easy
perpendicular (z-)axis anisotropy upon change of external magnetic field along
z. The model is derived from the Landau-Lifshitz-Gilbert equation for
magnetization evolution, written in closed form in terms of the z component of
the magnetization only. The model includes--in addition to the external
field--magnetic exchange, dipolar interactions and structural disorder. The
phase diagram in the disorder/interaction strength plane is presented, and the
different qualitative regimes are analyzed. The results compare very well with
observed experimental hysteresis loops and spatial magnetization patterns, as
for instance for the case of Co-Pt multilayers.Comment: 8 pages, 8 figure
Dynamics of apparent horizons in quantum gravitational collapse
We study the gravitational collapse of a massless scalar field within the
effective scenario of loop quantum gravity. Classical singularity is avoided
and replaced by a quantum bounce in this model. It is shown that, quantum
gravity effects predict a threshold scale below which no horizon can form as
the collapse evolves towards the bounce.Comment: Contribution to the Spanish Relativity Meeting in Portugal 2012
(ERE2012), Guimaraes, Portuga
Constraints on the average magnetic field strength of relic radio sources 0917+75 and 1401-33 from XMM-Newton observations
We observed two relic radio sources, 0917+75 and 1401-33, with the XMM-Newton
X-ray observatory. We did not detect any X-ray emission, thermal or
non-thermal, in excess of the local background level from either target. This
imposes new upper limits on the X-ray flux due to inverse Compton scattering of
photons from the cosmic microwave background by relativistic electrons in the
relic sources, and new lower limits on the magnetic field strength from the
relative strength of the radio and X-ray emission. The combination of radio and
X-ray observations provides a measure of the magnetic field independent of
equipartition or minimum energy assumptions. Due to increasing sensitivity of
radio observations, the known population of cluster relics has been growing;
however, studies of non-thermal X-ray emission from relics remain scarce. Our
study adds to the small sample of relics studied in X-rays. In both relics, our
field strength lower limits are slightly larger than estimates of the
equipartition magnetic field.Comment: 11 pages, 5 figures. Accepted by MNRA
Rotating vortex dipoles in ferromagnets
Vortex-antivortex pairs are localized excitations and have been found to be
spontaneously created in magnetic elements. In the case that the vortex and the
antivortex have opposite polarities the pair has a nonzero topological charge,
and it behaves as a rotating vortex dipole. We find theoretically, and confirm
numerically, the form of the energy as a function of the angular momentum of
the system and the associated rotation frequencies. We discuss the process of
annihilation of the pair which changes the topological charge of the system by
unity while its energy is monotonically decreasing. Such a change in the
topological charge affects profoundly the dynamics in the magnetic system. We
finally discuss the connection of our results with Bloch Points (BP) and the
implications for BP dynamics.Comment: 6 pages, 2 figure
Forbidden oxygen lines at various nucleocentric distances in comets
To study the formation of the [OI] lines - i.e., 5577 A (the green line),
6300 A and 6364 A (the two red lines) - in the coma of comets and to determine
the parent species of the oxygen atoms using the green to red-doublet emission
intensity ratio (G/R ratio) and the lines velocity widths. We acquired at the
ESO VLT high-resolution spectroscopic observations of comets C/2002 T7
(LINEAR), 73P-C/Schwassmann-Wachmann 3, 8P/Tuttle, and, 103P/Hartley 2 when
they were close to the Earth (< 0.6 au). Using the observed spectra, we
determined the intensities and the widths of the three [OI] lines. We have
spatially extracted the spectra in order to achieve the best possible
resolution of about 1-2", i.e., nucleocentric projected distances of 100 to 400
km depending on the geocentric distance of the comet. We have decontaminated
the [OI] green line from C2 lines blends. It is found that the observed G/R
ratio on all four comets varies as a function of nucleocentric projected
distance. This is mainly due to the collisional quenching of O(1S) and O(1D) by
water molecules in the inner coma. The observed green emission line width is
about 2.5 km/s and decreases as the distance from the nucleus increases which
can be explained by the varying contribution of CO2 to the O(1S) production in
the innermost coma. The photodissociation of CO2 molecules seems to produce
O(1S) closer to the nucleus while the water molecule forms all the O(1S) and
O(1D) atoms beyond 1000 km. Thus we conclude that the main parent species
producing O(1S) and O(1D) in the inner coma is not always the same. The
observations have been interpreted in the framework of the
coupled-chemistry-emission model of Bhardwaj & Raghuram (2012) and the upper
limits of CO2 relative abundances are derived from the observed G/R ratios.
Measuring the [OI] lines could indeed provide a new way to determine the CO2
relative abundance in comets.Comment: accepted for publication in A&A, the abstract is shortene
Field Tuning of Ferromagnetic Domain Walls on Elastically Coupled Ferroelectric Domain Boundaries
We report on the evolution of ferromagnetic domain walls during magnetization
reversal in elastically coupled ferromagnetic-ferroelectric heterostructures.
Using optical polarization microscopy and micromagnetic simulations, we
demonstrate that the spin rotation and width of ferromagnetic domain walls can
be accurately controlled by the strength of the applied magnetic field if the
ferromagnetic walls are pinned onto 90 degrees ferroelectric domain boundaries.
Moreover, reversible switching between magnetically charged and uncharged
domain walls is initiated by magnetic field rotation. Switching between both
wall types reverses the wall chirality and abruptly changes the width of the
ferromagnetic domain walls by up to 1000%.Comment: 5 pages, 5 figure
Recurrence in generic staircases
The straight-line flow on almost every staircase and on almost every square
tiled staircase is recurrent. For almost every square tiled staircase the set
of periodic orbits is dense in the phase space
Exchange shift of stripe domains in antiferromagnetically coupled multilayers
Antiferromagnetically coupled multilayers with perpendicular anisotropy, as
[CoPt]/Ru, Co/Ir, Fe/Au, display ferromagnetic stripe phases as the ground
states. It is theoretically shown that the antiferromagnetic interlayer
exchange causes a relative shift of domains in adjacent layers. This ``exchange
shift'' is responsible for several recently observed effects: an anomalous
broadening of domain walls, the formation of so-called ``tiger-tail'' patterns,
and a ``mixed state'' of antiferromagnetic and ferromagnetic domains in
[CoPt]/Ru multilayers. The derived analitical relations between the values of
the shift and the strength of antiferromagnetic coupling provide an effective
method for a quantitative determination of the interlayer exchange
interactions.Comment: 4 pages, 3 figure
The Aquatic Vascular Flora of Clear Lake, Cerro Gordo County, Iowa
A survey in July and August 1981 showed aquatic vascular plants in Clear Lake, Iowa, were concentrated in nine major vegetation beds covering a total of 22.6 hectares. Of 24 plant species identified, five were reported for the first time from this lake. The dominant taxa were softstem bulrush, Scirpus validus, and hybrid cattail, Typha glauca. Maps showing plant distributions and depth contours for the nine vegetation beds are presented. The 1981 community was characterized by emergent plants tolerant of high turbidity
- …