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Perturbations of Kantowski-Sachs models with a
cosmological constant

Z. Keresztes, M. Forsberg, M. Bradley, P. K.S. Dunsby and L.Á. Gergely

Abstract We investigate perturbations of Kantowski-Sachs models with a positive
cosmological constant, using the gauge invariant 1+3 and 1+1+2 covariant splits of
spacetime together with a harmonic decomposition. The perturbations are assumed
to be vorticity-free and of perfect fluid type, but otherwiseinclude general scalar,
vector and tensor modes. In this case the set of equations canbe reduced to six
evolution equations for six harmonic coefficients.

1 Introduction

In this work we consider perturbations of Kantowski-Sachs models with a positive
cosmological constant. Some of these models can undergo an anisotropic bounce
where the universe changes from a contracting to an expanding phase. A simple
argument used by Börner and Ehlers, [1], to show that an isotropic bouncing uni-
verse is excluded by observations does not hold for the Kantowski-Sachs models
[2]. Hence it is of interest to study the evolution and propagation of perturbations in
these models and their possible effects on observables, like the Sachs-Wolfe effect
[8]. To do this we use the 1+3 and 1+1+2 covariant splits of spacetime, [5, 6, 4, 3],
that are suitable for perturbation theory, as they employ variables that vanish on the
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background and hence their perturbations are gauge invariant [9]. The perturbations
are assumed to be vorticity-free and of perfect fluid type, but otherwise include gen-
eral scalar, vector and tensor modes. The evolution equations for the perturbative
variables are then derived in terms of harmonics.

2 The 1+3 and 1+1+2 covariant formalisms

A covariant formalism for the 1+3 split of spacetimes with a preferred timelike
vector,ua, was developed in [5, 6]. The projection operator onto the perpendicular
3-space is given byhb

a = gb
a + uaub . With the help of this vectors and tensors can

be covariantly decomposed into ”spatial” and ”timelike” parts. The covariant time
derivative and projected spatial derivative are given by

ψ̇a..b ≡ uc∇cψa...b and Dcψa...b ≡ h f
c hd

a...h
e
b∇ f ψd...e (1)

respectively. The covariant derivative of the 4-velocity,ua, can be decomposed as

∇aub =−uaAb +Daub =−uaAb +
1
3

θhab +ωab +σab (2)

where the kinematic quantities ofua, acceleration, expansion,vorticity and shear
are defined byAa ≡ ub∇bua, θ ≡ Daua, ωab ≡ D[aub], andσab ≡ D<aub> respec-
tively. These quantities, together with the Ricci tensor (expressed via the Einstein
equations by energy densityµ and pressurep for a perfect fluid) and the electric,
Eab ≡ Cacbducud, and magnetic,Hab ≡ 1

2ηadeCde
bcuc, parts of the Weyl tensor, are

then used as dependent variables. From the Ricci and Bianchiidentities one obtains
evolution equations in theua direction and constraints.

A formalism for a further split (1+2) with respect to a spatial vector na (with
uana = 0) was developed in [4, 3]. Projections perpendicular tona are made with
Nb

a = hb
a − nanb, and in an analogous way to above ”spatial” vectors and ten-

sors may be decomposed into scalars alongna and perpendicular two-vectors and
symmetric, trace-free two-tensors asAa = A na +A a , ωa = Ωna + Ω a, σab =
Σ(nanb − 1

2Nab)+ 2Σ(anb)+Σab and similarly forEab andHab in terms ofE , Ea,
Eab andH , Ha, Hab respectively. Derivatives along and perpendicular tona are

ψ̂a...b ≡ ncDcψa...b = nch f
c hd

a ...h
e
b∇ f ψd...e and δcψa...b ≡ N f

c Nd
a ...N

e
bD f ψd...e (3)

respectively. Similarly to the decomposition of∇aub, Danb and ṅa can be decom-
posed into further ‘kinematical’ quantities ofna as

Danb = naab +
1
2

φNab + ξ εab + ζab and ṅa = A ua +αa (4)

whereaa ≡ n̂a, φ ≡ δana, ξ ≡ 1
2εcabdδanbucnd , ζab ≡ δ{anb}, A ≡ naAa, αa ≡Nb

a ṅb.
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The Ricci and Bianchi identities are then written as evolution and propagation
equations in theua andna directions and constraints.

3 Perturbations of Kantowski-Sachs

As backgrounds we take the Locally Rotationally Symmetric (LRS) Kantowski-
Sachs cosmologies [7]

ds2 =−dt2+ a2
1(t)dz2+ a2

2(t)
(

dϑ 2+ sin2 θdϕ2) (5)

with cosmological constantΛ > 0 and matter given by a perfect fluid with barytropic
equationp = p(µ). The shearΣ , energy densityµ and the expansionθ evolve as

Σ̇ =−
1
2

Σ2−
2
3

Σθ −E , µ̇ =−θ (µ + p), θ̇ = (Λ −
1
2

µ −
3
2

p)−
1
3

θ 2−
3
2

Σ2(6)

where the electric part of the Weyl tensor isE =− 2
3µ − 2

3Λ −Σ2+ 2
9θ 2+ 1

3Σθ .
Instead of the background variablesθ ,Σ ,E ,µ we use their gradients

Wa ≡ δaθ , Va ≡ δaΣ , Xa ≡ δaE , µa ≡ δaµ , (7)

which vanish on the background and hence are gauge invariant(the derivatives
θ̂ ≡ naDaθ etc. can be given in terms of theδa derivatives due to commutation rela-
tions in the case of no vorticity). Similar variables vanishing on the background are
aa,φ ,ξ ,ζab,αa,A ,Aa, Σa,Σab,Ea,Eab,H ,Ha,Hab whereaa can be put to zero by
choice of frame.

The scalar, vector and tensor variables are expanded in harmonics according to

Ψ = ∑
k‖,k⊥

Ψk‖k⊥Pk‖Qk⊥ , Ψa = ∑
k‖,k⊥

Pk‖

(

ΨV
k‖k⊥

Qk⊥
a +ΨV

k‖k⊥
Q

k⊥
a

)

,

Ψab = ∑
k‖,k⊥

Pk‖

(

Ψ T
k‖,k⊥

Qk⊥
ab +ΨT

k‖,k⊥
Q

k⊥
ab

)

(8)

whereQk⊥ , Qk⊥
a , Q

k⊥
a , Qk⊥

ab andQ
k⊥
ab are harmonics on the 2-spheres of constantz

andPk‖ the corresponding expansion functions in thez-direction.

All coefficients can be given in terms ofµV
k‖,k⊥

, ΣT
k‖,k⊥

, E T
k‖,k⊥

, H
T
k‖,k⊥

andE
T
k‖,k⊥

,

H T
k‖,k⊥

, so the system has six degrees of freedom. The first four coefficients form a

closed system of evolution equations coupled to the densitygradient, in agreement
with the results for scalar perturbations in [2]. This reads

µ̇V
k‖,k⊥

=

[

Σ
2

(

1−6
µ + p

B

)

−
4θ
3

]

µV
k‖,k⊥

+
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a2

2
(µ + p)

[

(1−C)
(

BΣT
k‖,k⊥

+E
T
k‖,k⊥

)

−PH
T
k‖,k⊥

]

,

Σ̇T
k‖,k⊥

= −
1

a2(µ + p)
d p
dµ

µV
k‖,k⊥

+

(

Σ −
2θ
3

)

ΣT
k‖,k⊥

−E
T
k‖,k⊥

,

Ė
T
k‖,k⊥

=−
3Σ

2a2B
µV

k‖,k⊥
−

µ + p
2

ΣT
k‖,k⊥

−
3
2
(F +ΣC)E T

k‖,k⊥
+

P
2

H
T
k‖,k⊥

,

Ḣ
T

k‖,k⊥
= −

ik‖
a1a2B

µV
k‖,k⊥

−RH
T
k‖,k⊥

−
ik‖
a1

[

1−
3
2

(

C−
E

B

)]

E
T
k‖,k⊥

, (9)

where we have introduced the notationsB=
2k2

‖

a2
1
+

k2
⊥

a2
2
+ 9

2Σ2+3E , C =B−1
(

2−k2
⊥

a2
2

+3E

)

,

D = C+ µ+p
B , E = Σ

2

(

C− E

B

)

+ θE

3B , F = Σ + 2θ
3 , P = a1

ik‖

[

2k2
‖

a2
1
(1−C)−

k2
⊥

a2
2

2−k2
⊥

a2
2B

]

andR = 3
2F −

(

Σ + θ
3

) k2
⊥

a2
2B

− 1
2B

(

Σ − 2θ
3

)

(

D−
2k2

‖

a2
1

)

. The two last coefficents form

a closed system for free waves

Ė
T

k‖,k⊥
= −

3
2
(F+ΣD)E

T
k‖,k⊥

+
ik‖
a1

(1−D)H T
k‖,k⊥

,

Ḣ
T

k‖,k⊥
= −

a1

2ik‖

(

2k2
‖

a2
1

−BC+9ΣE

)

E
T
k‖,k⊥

−
3
2
(2E +F)H T

k‖,k⊥
. (10)

These sets of equations can be used to study the propagation of gravitational
waves and the coupling between scalar and tensor perturbations. Furthermore, from
the null geodesics of photons, equations for the redshift indifferent directions can be
given completely in terms of the 1+1+2 quantities. From their solutions the Sachs-
Wolfe effect and the corresponding variations in the CMB temperature can be cal-
culated.
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