13,066 research outputs found

    Seeing bulk topological properties of band insulators in small photonic lattices

    Get PDF
    We present a general scheme for measuring the bulk properties of non-interacting tight-binding models realized in arrays of coupled photonic cavities. Specifically, we propose to implement a single unit cell of the targeted model with tunable twisted boundary conditions in order to simulate large systems and, most importantly, to access bulk topological properties experimentally. We illustrate our method by demonstrating how to measure topological invariants in a two-dimensional quantum Hall-like model.Comment: 5 pages, 2 figures; with Supplemental Material (2 pages

    CP, T and CPT violation in future long baseline experiments

    Get PDF
    I give a short overview about the possibilities and problems related to the measurement of CP violation in long baseline experiments. Special attention is paid to the issue of degeneracies and a method for their resolution is quantitatively discussed. The CP violation reach for different experiments is compared in dependence of sin22θ13\sin^22\theta_{13} and \dm{21}. Furthermore a short comment about the possible effects of matter induced T violation is made. Finally the limits on CPT violation obtainable at a neutrino factory are shown.Comment: Talk presented at NUFACT02, London, 1-6 July, 2002. 3 pages, 2 figure

    Probing of valley polarization in graphene via optical second-harmonic generation

    Get PDF
    Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation. We present a complete theory of this effect within a single-particle approximation. It is shown that this may be a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for a development of ultrafast valleytronics in graphene.Comment: 5 pages, 3 figure

    Impact of the 3D source geometry on time-delay measurements of lensed type-Ia Supernovae

    Full text link
    It has recently been proposed that gravitationally lensed type-Ia supernovae can provide microlensing-free time-delay measurements provided that the measurement is taken during the achromatic expansion phase of the explosion and that color light curves are used rather than single-band light curves. If verified, this would provide both precise and accurate time-delay measurements, making lensed type-Ia supernovae a new golden standard for time-delay cosmography. However, the 3D geometry of the expanding shell can introduce an additional bias that has not yet been fully explored. In this work, we present and discuss the impact of this effect on time-delay cosmography with lensed supernovae and find that on average it leads to a bias of a few tenths of a day for individual lensed systems. This is negligible in view of the cosmological time delays predicted for typical lensed type-Ia supernovae but not for the specific case of the recently discovered type-Ia supernova iPTF16geu, whose time delays are expected to be smaller than a day.Comment: 7 pages, 4 figures, published in A&

    Extension of the Schiff theorem to ions and molecules

    Full text link
    According to the Schiff theorem the nuclear electric dipole moment (EDM) is screened in neutral atoms. In ions this screening is incomplete. We extend a derivation of the Schiff theorem to ions and molecules. The finite nuclear size effects are considered including Z^2 alpha^2 corrections to the nuclear Schiff moment which are significant in all atoms and molecules of experimental interest. We show that in majority of ionized atoms the nuclear EDM contribution to the atomic EDM dominates while in molecules the contribution of the Schiff moment dominates. We also consider the screening of electron EDM in ions

    Improved modelling of liquid GeSe2_2: the impact of the exchange-correlation functional

    Full text link
    The structural properties of liquid GeSe2_2 are studied by using first-principles molecular dynamics in conjuncton with the Becke, Lee, Yang and Parr (BLYP) generalized gradient approximation for the exchange and correlation energy. The results on partial pair correlation functions, coordination numbers, bond angle distributions and partial structure factors are compared with available experimental data and with previous first-principle molecular dynamics results obtained within the Perdew and Wang (PW) generalized gradient approximation for the exchange and correlation energy. We found that the BLYP approach substantially improves upon the PW one in the case of the short-range properties. In particular, the Ge-Ge pair correlation function takes a more structured profile that includes a marked first peak due to homopolar bonds, a first maximum exhibiting a clear shoulder and a deep minimum, all these features being absent in the previous PW results. Overall, the amount of tetrahedral order is significantly increased, in spite of a larger number of Ge-Ge homopolar connections. Due to the smaller number of miscoordinations, diffusion coefficients obtained by the present BLYP calculation are smaller by at least one order of magnitude than in the PW case.Comment: 6 figure

    Real-time observation of interfering crystal electrons in high-harmonic generation

    Full text link
    Accelerating and colliding particles has been a key strategy to explore the texture of matter. Strong lightwaves can control and recollide electronic wavepackets, generating high-harmonic (HH) radiation which encodes the structure and dynamics of atoms and molecules and lays the foundations of attosecond science. The recent discovery of HH generation in bulk solids combines the idea of ultrafast acceleration with complex condensed matter systems and sparks hope for compact solid-state attosecond sources and electronics at optical frequencies. Yet the underlying quantum motion has not been observable in real time. Here, we study HH generation in a bulk solid directly in the time-domain, revealing a new quality of strong-field excitations in the crystal. Unlike established atomic sources, our solid emits HH radiation as a sequence of subcycle bursts which coincide temporally with the field crests of one polarity of the driving terahertz waveform. We show that these features hallmark a novel non-perturbative quantum interference involving electrons from multiple valence bands. The results identify key mechanisms for future solid-state attosecond sources and next-generation lightwave electronics. The new quantum interference justifies the hope for all-optical bandstructure reconstruction and lays the foundation for possible quantum logic operations at optical clock rates

    On the improvement of the low energy neutrino factory

    Get PDF
    The low energy neutrino factory has been proposed as a very sensitive setup for future searches for CP violation and matter effects. Here we study how its performance is affected when the experimental specifications of the setup are varied. Most notably, we have considered the addition of the 'platinum' nu_{mu} -> nu_{e} channel. We find that, whilst theoretically the extra channel provides very useful complementary information and helps to lift degeneracies, its practical usefulness is lost when considering realistic background levels. Conversely, an increase in statistics in the 'golden' nu_{e} -> nu_{mu} channel and, to some extent, an improvement in the energy resolution, lead to an important increase in the performance of the facility, given the rich energy dependence of the 'golden' channel at these energies. We show that a low energy neutrino factory with a baseline of 1300 km, muon energy of 4.5 GeV, and either a 20 kton totally active scintillating detector or 100 kton liquid argon detector, can have outstanding sensitivity to the neutrino oscillation parameters theta13, delta and the mass hierarchy. For our estimated exposure of 2.8 x 10^{23} kton x decays per muon polarity, the low energy neutrino factory has sensitivity to theta13 and delta for sin^{2}(2theta13) > 10^{-4} and to the mass hierarchy for sin^{2}(2theta13) > 10^{-3}.Comment: 13 pages, 8 eps figures. Version published in PRD - experimental section with preliminary results removed, abstract and conclusions re-written accordingly, title changed, author list amended

    Radiation intensities and heat-transfer in boiler furnaces

    Get PDF
    https://ir.uiowa.edu/uisie/1008/thumbnail.jp
    corecore