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Valley polarization in graphene breaks inversion symmetry and therefore leads to second-harmonic generation.
We present a complete theory of this effect within a single-particle approximation. It is shown that this may be
a sensitive tool to measure the valley polarization created, e.g., by polarized light and, thus, can be used for the
development of ultrafast valleytronics in graphene.
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The unique electronic properties of graphene [1–3] open
ways for many interesting and unusual applications. In
particular, a concept of valleytronics was suggested [4], that
is, a manipulation of valley degree of freedom (conical
points K and K ′), in analogy with the well-known field of
spintronics [5]. Up to now, many different ways for the creation
of the valley polarization in graphene have been proposed
(see, e.g., Refs. [6–8]). At the same time, detection of the
valley polarization is a tricky issue. The first suggestion,
the use of a superconducting current through graphene [9],
does not look suitable for practical applications, e.g., due
to a requirement of low temperatures. It was mentioned in
Ref. [7] that the breaking of inversion symmetry by the valley
polarization can be probed via second-harmonic generation
(SHG), a well-known nonlinear optical effect [10]. Together
with their suggestion to use linearly polarized light to create
the valley polarization (recently, it was experimentally realized
for another two-dimensional crystal, MoS2 [11,12], with
circularly polarized light) it would open a way to ultrafast
valleytronics where all manipulations with the valley degree
of freedom are performed via short laser pulses, as illustrated
in Fig. 1. In spintronics, this is now one of the most prospective
lines of development [13].

There is, however, a problem. SHG is related to the term in
the current density �j proportional to the square of the electric
field �E:

jα = χαβγ EβEγ . (1)

For a system with inversion center χ̂ = 0. This does not mean,
however, that SHG is impossible since the photon wave vector
�q plays the role of a factor violating inversion symmetry, and
there is a contribution to the current

jα = φαβγ δEβEγ qδ. (2)

For the case of graphene and other two-dimensional electron
systems it was calculated in Ref. [14]. In comparison with
Eq. (1) it contains a relativistic smallness parameter vF /c ≈
1/300 where vF is the Fermi velocity and c is the velocity of
light. At the same time, the current in Eq. (1) is expected to be
proportional to the valley polarization. The order of magnitude
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of the valley polarization which can be really probed via SHG
depends on explicit values of the tensor χ̂ , which will be
calculated in this work.

Valley polarization can refer either to different occupations
or to different current densities due to electrons from the K

and K ′ valleys [4]. In the following, we consider different
occupations in the K and K ′ valleys, which corresponds to
different chemical potentials μ ± δμ, as illustrated in Fig. 1.
Possibilities to generate this kind of valley polarization include
quantum pumping [8], nonuniform valley current densities [4]
as well as valley Hall effects [15].

We start with a derivation of the effective Hamiltonian of
electron-photon interaction for the case of graphene (c.f., e.g.,
Refs. [3,16]), as the case of nonlinear optics requires special
care. Let us consider a general Hamiltonian of band electrons
in electromagnetic field described by the vector potential
A(r,t):

H =
∑

ij,LL′,σ

tL
′L

ij exp

(
i
e

c

∫ RiL

RjL′
drA(r,t)

)
c
†
iLσ cjL′σ , (3)

where RiL is the atomic position and L = (n,l,m,γ ) is a
combined index of quantum numbers of atom γ (in the
equations we assume � = 1). The atomic positions can be
separated into two parts

RiL = Ri + ρL, (4)

where the former indexes the unit cell i and the latter the atom
L within the cell in the case of a multiatomic unit cell (like the
honeycomb lattice of graphene). We assume, as usual, that the
interaction with the electromagnetic field is taken into account
via Peierls substitution

c
†
iLσ → c

†
iLσ exp

(
i
e

c

∫ RiL

drA(r,t)
)

(5)

for the electron creation operators c
†
iLσ and similarly for the

electron annihilation operators ciLσ . tL
′L

ij are the parameters of
the band-structure Hamiltonian.

Since we are interested in terms up to second order in the
vector potential we expand the hopping and treat the additional
terms proportional to the vector potential as perturbation. The
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FIG. 1. (Color online) Illustration of second-harmonic genera-
tion in graphene. SHG requires breaking of inversion symmetry
which can be achieved through valley polarization as illustrated in
the left panel. Valley polarization is modeled in terms of different
chemical potentials μ ± δμ in valleys K and K ′. With the choice of
the coordinate system illustrated in the right panel, valley polarization
breaks the x → −x mirror symmetry. The second-harmonic intensity
I is proportional to δμ2.

Hamiltonian then becomes

H ≡ H (0) + H (1) + H (2) + O(A3)

=
∑

ij,LL′,σ

tL
′L

ij c
†
iL′σ cjLσ + i

e

c
Aα(t)

×
∑

ij,LL′,σ

tL
′L

ij (RiL′α − RjLα)c†iL′σ cjLσ

+ 1

2

(
i
e

c

)2

Aα(t)Aβ(t)
∑

ij,LL′,σ

tL
′L

ij (RiL′α

−RjLα)(RiL′β − RjLβ)c†iL′σ cjLσ + O(A3), (6)

where the second equation is defined in powers of the
vector potential and we further assumed that the vector
potential slowly varies in r. With a basis transformation
to Bloch waves ckLσ = 1√

N

∑
j exp(ikRj )cjLσ the bare part

of the Hamiltonian is diagonalized according to H (0) =∑
k,LL′,σ H 0

k,LL′c
†
kLσ ckL′σ with

H 0
k,LL′ =

∑
ij

tL
′L

ij exp[−ik(Ri − Rj )]. (7)

Now one can distinguish between two currents which are
defined using the Hamiltonian (6) by

j (1)
α ≡ δH

δAα(r,t)

∣∣∣∣
A=0

= e
∑

LL′,k,σ

vLL′
kα c

†
kL′σ ckLσ , (8)

j
(2)
αβ ≡ δ2H

δAα(r,t)δAβ(r,t)

∣∣∣∣
A=0

= e2
∑

LL′,k,σ

vLL′
kαβc

†
kL′σ ckLσ ,

(9)

where

vLL′
kα ≡ i

∑
i−j

tL
′L

ij (RiL′α − RjLα)

× exp[−ik(Ri − Rj )] (10)

and

vLL′
kαβ ≡ (i)2

∑
i−j

tL
′L

ij (RiL′α − RjLα)(RiL′β − RjLβ)

× exp[−ik(Ri − Rj )]. (11)

With Fourier transform of the band Hamiltonian (6) we can
reexpress the generalized velocities resulting from Eq. (10)
according to

vLL′
kα = [

∂kα
− i

(
ρα

L′ − ρα
L

)]
H

(0)
k,LL′ (12)

and Eq. (11) leads to

vLL′
kαβ = [

∂kα
∂kβ

+ i
(
ρα

L′ − ρα
L

)
∂kβ

+ i
(
ρ

β

L′ − ρ
β

L

)
∂kα

− (
ρα

L′ − ρα
L

)(
ρ

β

L′ − ρ
β

L

)]
H

(0)
k,LL′ . (13)

We will use these general expressions for the particular
case of graphene, in a single-band approximation (π bands
only) taking into account only the nearest-neighbor (t) and the
next-nearest-neighbor (t ′) hopping parameters [17]; the latter
can be important since it breaks the electron-hole symmetry
of the Hamiltonian which as we will see is essential for SHG.

There are two contributions to the electric current quadratic
in the vector potential A(r,t). Note that we now switch to the
response of an electric field by using the identity

1

c
Aα(r,t) = −i

Eα(r,t)
ω

. (14)

The contributions to the nonlinear optical conductivity (1) via
Feynman diagrams are drawn in Fig. 2.

The corresponding algebraic equation for the triangle
diagram is given by

χ
triangle
αβγ (iω,iω,2iω)

= −i
e3

ω2

1

β

∑
ν

∑
k

∑
L1,...,L6

v
L6L1
kα GL1L2 (k,iν)

×v
L2L3
kβ GL3L4 (k,iν + iω)vL4L5

kγ GL5L6 (k,iν − iω), (15)

H

j

j

(1)

H(1)

H(2)

ω

2ω ω

2ω
ω

ω

FIG. 2. (Color online) Two second-order contributions to the
nonlinear susceptibility. Top: triangle diagram. Bottom: nonlinear
bubble diagram. Solid lines are electron Green’s functions and wavy
tails indicate photons involved in the processes.
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and for the nonlinear bubble diagram

χbubble
αβγ (iω,iω,2iω)

= −i
e3

ω2

1

β

∑
ν

∑
k

∑
L1,...,L4

×v
L4L1
kαβ GL1L2 (k,iν − iω)vL2L3

kγ GL3L4 (k,iν + iω). (16)

Here L1, . . . ,L6 are pseudospin indices, β = 1/T is the
inverse temperature (we use the units � = kB = 1), and

Ĝ (iν) = 1

iν + μ − Ĥ
(17)

is the Green’s function with μ being the chemical potential
counted from the neutrality (conical) point. Thus, the nonlinear
susceptibility is given by

χαβγ = χbubble
αβγ + χ

triangle
αβγ . (18)

Note that the minus sign from the fermion loop should be taken
into account in both diagrams. The factor 1

ω2 appears due to
Eq. (14). We pass, as usual [18] to imaginary (Matsubara)
frequencies; at the end of the calculations the analytical
continuation to the real axis iω → ω + iδ is performed.

If we take into account electron-electron interactions the
nonlinear conductivity will be renormalized by three-leg and
six-leg electron vertices; the corresponding expressions can be
found in Ref. [19].

It is obvious by inversion symmetry that for the non-valley-
polarized case χ̂ = 0. We mimic the valley polarization by
splitting the Brillouin zone into two symmetrically chosen
parts, one containing the point K and the other part containing
the point K ′, and assuming different chemical potentials for
these two parts. We then expand all the quantities dependent
on the chemical potential as

f (μ + δμ) − f (μ − δμ) ≈ 2
∂f (μ)

∂μ
δμ. (19)

We evaluated the derivative ∂χ/∂δμ analytically using
Eqs. (15) and (16) and then performed a numerical summation
over Matsubara frequencies and wave vectors involving half of
the Brillouin zone. We choose β = 40/eV, which corresponds
to a temperature of 290 K. In this case, sampling of the
Brillouin with 121 × 121 k points and summation of 200
(1000) fermionic Matsubara frequencies are required to reach
convergence for the triangle (nonlinear bubble) diagram at
bosonic Matsubara frequencies �n = 2πn/β in the range of
n = 1, . . . ,20.

A symmetry analysis shows that there are only two
independent components of the tensor χ̂ , χxxx = −χxyy =
−χyxy = −χyyx and χyyy = −χyxx = −χxxy = −χxyx [10].
With the choice of coordinates made here, the K and K ′ points
of the Brillouin zone are on the positive/negative x axis (see
Fig. 1). Thus valley polarization breaks inversion symmetry
with respect to the x direction, x → −x, but the y → −y

symmetry is preserved. Thus, we have χyyy = 0 and we will
show the results only for χxxx .

The computational results for the case of finite chemical
potential μ = 0.2t are shown in Fig. 3. For the case μ = 0,t ′ =
0 one finds dχxxx/dμ = 0, due to electron-hole symmetry.
Nearest-neighbor hopping t ′ breaks this symmetry and leads

FIG. 3. (Color online) Computational results for � =
−(�ω)2 ∂χxxx

∂μ
(in the units of e3a/�, a is the lattice constant)

as a function of real frequency ω (in the units of t/�). The total
answer is the sum of the triangle and bubble contributions.

to nonzero dχxxx/dμ even at μ = 0 and according to Ref. [17]
we have t ′ ≈ 0.1t . Our calculations show, however, that for
μ = 0.2t the effects of finite t ′ are negligible leading only to
a few-percent corrections.

One can see from Fig. 3 that a dimensionless quantity �

characterizing the valley-polarization induced SHG is pretty
large, of the order of ten, despite the smallness of the ratios
t ′/t and μ/t . It is consistent with the computational results
[20–22] on SHG in chiral nanotubes which turned out to be
strongly enhanced in comparison with conventional materials
without inversion symmetry. A comparison with the results of
Ref. [14] shows that the valley-polarization induced SHG will
be dominant if |δμ|/t > 0.01vF /c ≈ 3 × 10−5. Note, that one
additional smallness in order of magnitude originates from the
factor 3/8π ≈ 0.1 in Ref. [14] and another one from the fact
that � ≈ 10.

Typical nonlinear crystals have second-order nonlinear
susceptibilities on the order of χ̃ = 0.1 to 100 pm/V [10].
It is interesting to see which amount of valley polariza-
tion is required to reach this order in graphene. From
the current density j = χE2 we obtain the oscillating
in-plane charge density |σ | = |j |/c and the associated

041404-3
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electric field E2ω = σ/ε0 = χE2/ε0c = χ̃E2. With photon
energies on the order of �ω = 1.5 eV ≈ 0.5t and � ≈ 10 we
find thus χ̃/δμ = −�(e3a/�)/[ε0c(�ω)2] ≈ 1(Å/V)/eV =
100 (pm/V)/eV. Thus δμ � 1 meV is required to reach
χ̃ = 0.1 pm/V.

This means that SHG is, indeed, a very efficient tool to
probe the valley polarization in graphene. Our results show that
“triangle” and “bubble” contributions to the second-harmonic
generation are, in general, comparable. Also, one can see that
they have quite a similar frequency dependence. An alternative
way to probe the valley polarization is the photogalvanic effect,
that is, generation of dc current under laser pulses. This process
is described by the quantity χαβγ (ω,ω,0) which is of the
same order of magnitude as χαβγ (ω,ω,2ω) calculated here.
It would be very interesting to probe both of these effects
experimentally in graphene with valley polarization.

In monolayer MoS2, valley polarization is controllable by
(linear) optics [11,12]. Symmetry-wise MoS2 corresponds to
graphene with broken sublattice symmetry (i.e., D3h), where
Mo atoms occupy sublattice A and the S atoms reside on
sublattice B. Thus, there is no y → −y mirror symmetry
and χyyy �= 0 even in the absence of valley polarization. The
initial x → −x mirror symmetry of MoS2 ensures, however,
that nonzero χxxx requires additional symmetry break as
provided, e.g., by valley polarization. Thus, the concept of
nonlinear optics and photogalvanic effects to detect valley
polarization is partly transferable to MoS2. It works with light

which is linearly polarized in the x direction but not in the y

direction.
Lattice matched graphene-hBN (hexagonal boron nitride)

heterostructures have proven to allow for nonlocal transport
phenomena based on the valley degree of freedom over
micron scale distances [15]. It appears thus highly promising
to combine the advantages of MoS2 (optical generation of
valley polarization [11,12]) with those of graphene (trans-
port properties). Finally, for graphene (not lattice matched
to hBN) very close to the neutrality point a flavor Hall
effect has been observed which could be of spin or valley
origin [23]. Measuring SHG could solve this puzzle, since
only valley but not spin polarization would lead to an SHG
signal.

Note added. Recently, a related work, Ref. [24], reporting
similar results has been published. While Ref. [24] focuses on
lower energies (the authors of that work use Dirac spectrum
with trigonal warping corrections, instead of the full tight-
binding spectrum as in the present work), the conclusions
drawn here and in Ref. [24] are in agreement.
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Graphene Flagship and the Deutsche Forschungsgemeinschaft
(DFG) through SPP 1459. M.I.K. also acknowledges financial
support from the European Research Council Advanced Grant
program (Contract No. 338957).
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