1,025 research outputs found

    Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds

    Get PDF
    Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L. spp., and Lithophaga/Leiosolenus sp., for the first time identified below 20m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage. As a consequence of phenotypic plasticity, small-sized adults with slow growth rates coexist with juveniles. Below wave base macroids and rhodoliths had the highest amounts of bioerosion, mainly produced by sponges and polychaete worms. These modern observations provide bases for paleobiological inferences in fossil occurrences.Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) 25247083Erasmus+FAR2012-2017FIR2016FIR2018PRIN "Biotic resilience to global change: biomineralization of planktonic and benthic calcifiers in the past, present and future" 2017RX9XXXYBioMed Central-Prepay Membership at the University of FerraraJunta de Andalucía RNM 190Committee on ResearchMuseum of PaleontologyDepartment of Integrative Biology, UC BerkeleyUC Pacific Rim Projec

    Cardiac arrest associated with sildenafil ingestion in a patient with an abnormal origin of the left coronary artery: case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Left coronary artery arising from the right sinus of Valsalva is an uncommon congenital coro-nary anomaly that seems to be associated with sudden death in young patients.</p> <p>Case presentation</p> <p>We report a case of cardiac arrest in a 59-year-old patient after sexual intercourse and Silde-nafil ingestion. A coronary arteriography and an angiographic computed tomography scan subsequently revealed a LCA origin from the right aortic sinus along with an intramural course of the left main stem. In addition a distal stenosis of the right coronary artery was detected. After successful resuscitation without neurological deficits coronary artery bypass surgery was performed.</p> <p>Conclusion</p> <p>To our knowledge, this is the first report demonstrating sudden cardiac arrest associated with Sildenafil ingestion in a patient with this type of coronary anomaly. The question arises, whether a cardiac screening is necessary before a Sildenafil therapy is initiated.</p

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Get PDF
    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechocystis \textit{Synechocystis } sp. PCC 7002 and Synechocystis \textit{Synechocystis } sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechocystis \textit{Synechocystis } sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.T.L. was supported by BBSRC Research Grant BB/J016985/1 to C.W.M. D.J.L-S. was supported by the Environmental Services Association Education Trust. L.L.B was supported by a BBSRC Doctoral Training Grant (BB/F017464/1)

    From venture idea to venture formation:The role of sensemaking, sensegiving and sense receiving

    Get PDF
    This article explores the sensemaking processes entrepreneurs use when transitioning between venture ideas and venture formation. Adopting a sensemaking/sensegiving approach and utilising an interpretivist methodology, we use sensemaking to analyse the entrepreneurial journey of four diverse entrepreneurs. In so doing, we make three contributions: first, we locate the early stages of the entrepreneurial context as a primary site where sensemaking occurs as entrepreneurs deal with the differences between expectations and reality. Second, we show how sensemaking occurs when entrepreneurs build a causal map of the problem they wish to address and how social exchanges are crucial as entrepreneurs then refine that idea with other sensegivers. Finally, we extend scholarly understanding through explaining the ways in which sensemaking, sensegiving and sense receiving contribute to the entrepreneurs' decision to act and create a new venture

    On RR couplings on D-branes at order O(α2)O(\alpha'^2)

    Full text link
    Recently, it has been found that there are couplings of the RR field strength F(p)F^{(p)} and the B-field strength HH on the world volume of Dp_p-branes at order O(α2){\cal O}(\alpha'^2). These couplings which have both world-volume and transverse indices, are invariant under the linear T-duality transformations. Consistency with the nonlinear T-duality indicates that the RR field strength F(p)F^{(p)} in these couplings should be replaced by F(p)=dC(p1){\cal F}^{(p)}=d{\cal C}^{(p-1)} where C=eBC{\cal C}=e^{B}C. This replacement, however, reproduces some non-gauge invariant terms. On the other hand, the nonlinear terms are invariant under the linear T-duality transformations at the level of two B-fields. This allows one to remove some of the nonlinear terms in F(p){\cal F}^{(p)}. We fix this by comparing the nonlinear couplings with the S-matrix element of one RR and two NSNS vertex operators. Our results indicate that in the expansion of F(p){\cal F}^{(p)} one should keep only the B-field gauge invariant terms, e.g. BdC(p3)B\wedge dC^{(p-3)} where both indices of B-field lie along the brane. Moreover, in this case one should replace BB with B+2παfB+2\pi\alpha'f to have the BB-field gauge invariance.Comment: 23 pages, Latex file, 1 figure; v2:typos corrected, to appear in JHE

    Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach

    Get PDF
    Background: The tectum is a structure localized in the roof of the midbrain in vertebrates, and is taken to be highly conserved in evolution. The present article assessed three hypotheses concerning the evolution of lamination and citoarchitecture of the tectum of nontetrapod animals: 1) There is a significant degree of phylogenetic inertia in both traits studied (number of cellular layers and number of cell classes in tectum); 2) Both traits are positively correlated accross evolution after correction for phylogeny; and 3) Different developmental pathways should generate different patterns of lamination and cytoarchitecture. Methodology/Principal Findings: The hypotheses were tested using analytical-computational tools for phylogenetic hypothesis testing. Both traits presented a considerably large phylogenetic signal and were positively associated. However, no difference was found between two clades classified as per the general developmental pathways of their brains. Conclusions/Significance: The evidence amassed points to more variation in the tectum than would be expected by phylogeny in three species from the taxa analysed; this variation is not better explained by differences in the main course of development, as would be predicted by the developmental clade hypothesis. Those findings shed new light on th

    Prodrug converting enzyme gene delivery by L. monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p

    Multiple-Clade H5N1 Influenza Split Vaccine Elicits Broad Cross Protection against Lethal Influenza Virus Challenge in Mice by Intranasal Vaccination

    Get PDF
    Background: The increase in recent outbreaks and unpredictable changes of highly pathogenic avian influenza (HPAI) H5N1 in birds and humans highlights the urgent need to develop a cross-protective H5N1 vaccine. We here report our development of a multiple-clade H5N1 influenza vaccine tested for immunogenicity and efficacy to confer cross-protection in an animal model. Methodology/Principal Findings: Mice received two doses of influenza split vaccine with oil-in-water emulsion adjuvant SP01 by intranasal administration separated by two weeks. Single vaccines (3 mg HA per dose) included rg-A/Vietnam/1203/ 2004(Clade 1), rg-A/Indonesia/05/2005(Clade 2.1), and rg-A/Anhui/1/2005(Clade 2.3.4). The trivalent vaccine contained 1 mg HA per dose of each single vaccine. Importantly, complete cross-protection was observed in mice immunized using trivalent vaccine with oil-in-water emulsion adjuvant SP01 that was subsequently challenged with the lethal A/OT/SZ/097/03 influenza strain (Clade 0), whereas only the survival rate was up to 60 % in single A/Anhui/1/2005 vaccine group. Conclusion/Significance: Our findings demonstrated that the multiple-clade H5N1 influenza vaccine was able to elicit a cross-protective immune response to heterologous HPAI H5N1 virus, thus giving rise to a broadly cross-reactive vaccine to potential prevention use ahead of the strain-specific pandemic influenza vaccine in the event of an HPAI H5N1 influenza outbreak. Also, the multiple-clade adjuvanted vaccine could be useful in allowing timely initiation of vaccination agains

    Chemical Instability and Promiscuity of Arylmethylidenepyrazolinone-Based MDMX Inhibitors.

    Get PDF
    Targeting the protein-protein interaction between p53 and MDM2/MDMX (MDM4) represents an attractive anticancer strategy for the treatment of p53-competent tumors. Several selective and potent MDM2 inhibitors have been developed and entered the clinic; however, the repertoire of MDMX antagonists is still limited. The arylmethylidenepyrazolinone SJ-172550 has been reported as a selective MDMX antagonist; yet, uncertainties about its mechanism of action have raised doubts about its use as a chemical probe. Here, we show that, in addition to its unclear mode of action, SJ-172550 is unstable in aqueous buffers, giving rise to side products of unknown biological activity. Using an SJ-172550-derived affinity probe, we observed promiscuous binding to cellular proteins whereas cellular thermal shift assays did not reveal a stabilizing effect on MDMX. Overall, our results raise further questions about the interpretation of data using SJ-172550 and related compounds to investigate cellular phenotypes
    corecore