76 research outputs found

    Comparative Evolution of Jupiter and Saturn

    Full text link
    We present evolutionary sequences for Jupiter and Saturn, based on new nongray model atmospheres, which take into account the evolution of the solar luminosity and partitioning of dense components to deeper layers. The results are used to set limits on the extent to which possible interior phase separation of hydrogen and helium may have progressed in the two planets. When combined with static models constrained by the gravity field, our evolutionary calculations constrain the helium mass fraction in Jupiter to be between 0.20 and 0.27, relative to total hydrogen and helium. This is in agreement with the Galileo determination. The helium mass fraction in Saturn's atmosphere lies between 0.11 and 0.25, higher than the Voyager determination. Based on the discrepancy between the Galileo and Voyager results for Jupiter, and our models, we predict that Cassini measurements will yield a higher atmospheric helium mass fraction for Saturn relative to the Voyager value.Comment: 18 pages, LaTeX, 4 figures. submitted to ``Planetary and Space Science.'

    Theortetical Models of Extrasolar Giant Planets

    Get PDF
    The recent discoveries of giant planets around nearby stars have galvanized the planetary science community, astronomers, and the public at large. Since {\it direct} detection is now feasible, and is suggested by the recent acquisition of Gl229 B, it is crucial for the future of extrasolar planet searches that the fluxes, evolution, and physical structure of objects from Saturn's mass to 15 Juipter masses be theoretically investigated. We discuss our first attempts to explore the characteristics of extrasolar giant planets (EGPs), in aid of both NASA's and ESA's recent plans to search for such planets around nearby stars.Comment: LaTeX, using espcrc2.sty style files from Elsevier, 10 pages, 4 figures, to be published in the Proceedings of the International Conference on "Sources and Detection of Dark Matter in the Universe," ed. by D. Sanders et al. (Nuclear Physics B Supplement), 199

    The BIG protein distinguishes the process of CO2 -induced stomatal closure from the inhibition of stomatal opening by CO2

    Get PDF
    We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses

    The Theory of Brown Dwarfs and Extrasolar Giant Planets

    Full text link
    Straddling the traditional realms of the planets and the stars, objects below the edge of the main sequence have such unique properties, and are being discovered in such quantities, that one can rightly claim that a new field at the interface of planetary science and and astronomy is being born. In this review, we explore the essential elements of the theory of brown dwarfs and giant planets, as well as of the new spectroscopic classes L and T. To this end, we describe their evolution, spectra, atmospheric compositions, chemistry, physics, and nuclear phases and explain the basic systematics of substellar-mass objects across three orders of magnitude in both mass and age and a factor of 30 in effective temperature. Moreover, we discuss the distinctive features of those extrasolar giant planets that are irradiated by a central primary, in particular their reflection spectra, albedos, and transits. Aspects of the latest theory of Jupiter and Saturn are also presented. Throughout, we highlight the effects of condensates, clouds, molecular abundances, and molecular/atomic opacities in brown dwarf and giant planet atmospheres and summarize the resulting spectral diagnostics. Where possible, the theory is put in its current observational context.Comment: 67 pages (including 36 figures), RMP RevTeX LaTeX, accepted for publication in the Reviews of Modern Physics. 30 figures are color. Most of the figures are in GIF format to reduce the overall size. The full version with figures can also be found at: http://jupiter.as.arizona.edu/~burrows/papers/rm

    Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Interstitial lung abnormalities (ILAs) are associated with the highest genetic risk locus for idiopathic pulmonary fibrosis (IPF); however, the extent to which there are unique associations among individuals with ILAs or additional overlap with IPF is not known.Objectives: To perform a genome-wide association study (GWAS) of ILAs.Methods: ILAs and a subpleural-predominant subtype were assessed on chest computed tomography (CT) scans in the AGES (Age Gene/Environment Susceptibility), COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]), Framingham Heart, ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points), MESA (Multi-Ethnic Study of Atherosclerosis), and SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) studies. We performed a GWAS of ILAs in each cohort and combined the results using a meta-analysis. We assessed for overlapping associations in independent GWASs of IPF.Measurements and Main Results: Genome-wide genotyping data were available for 1,699 individuals with ILAs and 10,274 control subjects. The MUC5B (mucin 5B) promoter variant rs35705950 was significantly associated with both ILAs (P = 2.6 Ă— 10-27) and subpleural ILAs (P = 1.6 Ă— 10-29). We discovered novel genome-wide associations near IPO11 (rs6886640, P = 3.8 Ă— 10-8) and FCF1P3 (rs73199442, P = 4.8 Ă— 10-8) with ILAs, and near HTRE1 (rs7744971, P = 4.2 Ă— 10-8) with subpleural-predominant ILAs. These novel associations were not associated with IPF. Among 12 previously reported IPF GWAS loci, five (DPP9, DSP, FAM13A, IVD, and MUC5B) were significantly associated (P < 0.05/12) with ILAs.Conclusions: In a GWAS of ILAs in six studies, we confirmed the association with a MUC5B promoter variant and found strong evidence for an effect of previously described IPF loci; however, novel ILA associations were not associated with IPF. These findings highlight common genetically driven biologic pathways between ILAs and IPF, and also suggest distinct ones

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom’s 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Studying Amphiphilic Self-assembly with Soft Coarse-Grained Models

    Full text link
    • …
    corecore