129 research outputs found

    Carbon fiber composite characterization in adverse thermal environments.

    Get PDF
    The behavior of carbon fiber aircraft composites was studied in adverse thermal environments. The effects of resin composition and fiber orientation were measured in two test configurations: 102 by 127 millimeter (mm) test coupons were irradiated at approximately 22.5 kW/m{sup 2} to measure thermal response, and 102 by 254 mm test coupons were irradiated at approximately 30.7 kW/m{sup 2} to characterize piloted flame spread in the vertically upward direction. Carbon-fiber composite materials with epoxy and bismaleimide resins, and uni-directional and woven fiber orientations, were tested. Bismaleimide samples produced less smoke, and were more resistant to flame spread, as expected for high temperature thermoset resins with characteristically lower heat release rates. All materials lost approximately 20-25% of their mass regardless of resin type, fiber orientation, or test configuration. Woven fiber composites displayed localized smoke jetting whereas uni-directional composites developed cracks parallel to the fibers from which smoke and flames emanated. Swelling and delamination were observed with volumetric expansion on the order of 100% to 200%. The purpose of this work was to provide validation data for SNL's foundational thermal and combustion modeling capabilities

    Empirical Constraints on the Oblateness of an Exoplanet

    Full text link
    We show that the gas giant exoplanet HD 189733b is less oblate than Saturn, based on Spitzer Space Telescope photometry of seven transits. The observable manifestations of oblatenesswould have been slight anomalies during the ingress and egress phases, as well as variations in the transit depth due to spin precession. Our nondetection of these effects gives the first empirical constraints on the shape of an exoplanet. The results are consistent with the theoretical expectation that the planetary rotation period and orbital period are synchronized, in which case the oblateness would be an order of magnitude smaller than our upper limits. Conversely, if HD 189733b is assumed to be in a synchronous, zero-obliquity state, then the data give an upper bound on the quadrupole moment of the planet (J2 < 0.068 with 95% confidence) that is too weak to constrain the interior structure of the planet. An Appendix describes a fast algorithm for computing the transit light curve of an oblate planet, which was necessary for our analysis.Comment: 14 pages, accepted for publication in The Astrophysical Journa

    Near-infrared transit photometry of the exoplanet HD 149026b

    Full text link
    The transiting exoplanet HD 149026b is an important case for theories of planet formation and planetary structure, because the planet's relatively small size has been interpreted as evidence for a highly metal-enriched composition. We present observations of 4 transits with the Near Infrared Camera and Multi-Object Spectrometer on the Hubble Space Telescope, within a wavelength range of 1.1--2.0 ÎŒ\mum. Analysis of the light curve gives the most precise estimate yet of the stellar mean density, ρ⋆=0.497−0.057+0.042\rho_\star = 0.497^{+0.042}_{-0.057} g cm−3^{-3}. By requiring agreement between the observed stellar properties (including ρ⋆\rho_\star) and stellar evolutionary models, we refine the estimate of the stellar radius: R⋆=1.541−0.042+0.046R_\star = 1.541^{+0.046}_{-0.042} R_\sun. We also find a deeper transit than has been measured at optical and mid-infrared wavelengths. Taken together, these findings imply a planetary radius of Rp=0.813−0.025+0.027R_p = 0.813^{+0.027}_{-0.025} RJupR_{\rm Jup}, which is larger than earlier estimates. Models of the planetary interior still require a metal-enriched composition, although the required degree of metal enrichment is reduced. It is also possible that the deeper NICMOS transit is caused by wavelength-dependent absorption by constituents in the planet's atmosphere, although simple model atmospheres do not predict this effect to be strong enough to account for the discrepancy. We use the 4 newly-measured transit times to compute a refined transit ephemeris.Comment: 18 pages, 13 figures, accepted for publication in Ap

    Validation of a Medicare Claims-based Algorithm for Identifying Breast Cancers Detected at Screening Mammography

    Get PDF
    The breast cancer detection rate is a benchmark measure of screening mammography quality, but its computation requires linkage of mammography interpretive performance information with cancer incidence data. A Medicare claims-based measure of detected breast cancers could simplify measurement of this benchmark and facilitate mammography quality assessment and research

    Reproductive Success of Eastern Bluebirds (Siala sialis) on Suburban Golf Courses

    Get PDF
    Understanding the role of green space in urban—suburban landscapes is becoming critical for bird conservation because of rampant habitat loss and conversion. Although not natural habitat, golf courses could play a role in bird conservation if they support breeding populations of some native species, yet scientists remain skeptical. In 2003–2009, we measured reproduction of Eastern Bluebirds (Siala sialis) in Virginia on golf courses and surrounding reference habitats, of the type that would have been present had golf courses not been developed on these sites (e.g., recreational parks, cemeteries, agriculture land, and college campus). We monitored \u3e650 nest boxes and 2,255 nest attempts (n = 1,363 golf course, n = 892 reference site). We used an information-theoretic modeling approach to evaluate whether conditions on golf courses affected timing of breeding, investment, or nest productivity compared with nearby reference sites. We found that Eastern Bluebirds breeding on golf courses reproduced as well as those breeding in other disturbed habitats. Habitat type had no effect on initial reproductive investment, including date of clutch initiation or clutch size ( = 4 eggs). During incubation and hatching, eggs in nests on golf courses had higher hatching rates (80%) and brood sizes ( = 4.0 nestlings brood-1) than nests on reference sites (75% hatching rate; = 3.8 nestlings brood-1). Mortality of older nestlings was also lower on golf courses and, on average, golf course nests produced 0.3 more fledglings than nests on reference sites. Thus, within a matrix of human-dominated habitats, golf courses may support productive populations of some avian species that can tolerate moderate levels of disturbance, like Eastern Bluebirds

    Gender Differences in Russian Colour Naming

    Get PDF
    In the present study we explored Russian colour naming in a web-based psycholinguistic experiment (http://www.colournaming.com). Colour singletons representing the Munsell Color Solid (N=600 in total) were presented on a computer monitor and named using an unconstrained colour-naming method. Respondents were Russian speakers (N=713). For gender-split equal-size samples (NF=333, NM=333) we estimated and compared (i) location of centroids of 12 Russian basic colour terms (BCTs); (ii) the number of words in colour descriptors; (iii) occurrences of BCTs most frequent non-BCTs. We found a close correspondence between females’ and males’ BCT centroids. Among individual BCTs, the highest inter-gender agreement was for seryj ‘grey’ and goluboj ‘light blue’, while the lowest was for sinij ‘dark blue’ and krasnyj ‘red’. Females revealed a significantly richer repertory of distinct colour descriptors, with great variety of monolexemic non-BCTs and “fancy” colour names; in comparison, males offered relatively more BCTs or their compounds. Along with these measures, we gauged denotata of most frequent CTs, reflected by linguistic segmentation of colour space, by employing a synthetic observer trained by gender-specific responses. This psycholinguistic representation revealed females’ more refined linguistic segmentation, compared to males, with higher linguistic density predominantly along the redgreen axis of colour space

    The Gαq/11 Proteins Contribute to T Lymphocyte Migration by Promoting Turnover of Integrin LFA-1 through Recycling

    Get PDF
    The role of Gαi proteins coupled to chemokine receptors in directed migration of immune cells is well understood. In this study we show that the separate class of Gαq/11 proteins is required for the underlying ability of T cells to migrate both randomly and in a directed chemokine-dependent manner. Interfering with Gαq or Gα11 using dominant negative cDNA constructs or siRNA for Gαq causes accumulation of LFA-1 adhesions and stalled migration. Gαq/11 has an impact on LFA-1 expression at plasma membrane level and also on its internalization. Additionally Gαq co-localizes with LFA-1- and EEA1-expressing intracellular vesicles and partially with Rap1- but not Rab11-expressing vesicles. However the influence of Gαq is not confined to the vesicles that express it, as its reduction alters intracellular trafficking of other vesicles involved in recycling. In summary vesicle-associated Gαq/11 is required for the turnover of LFA-1 adhesion that is necessary for migration. These G proteins participate directly in the initial phase of recycling and this has an impact on later stages of the endo-exocytic pathway

    The Consensus Coding Sequence (Ccds) Project: Identifying a Common Protein-Coding Gene Set for the Human and Mouse Genomes

    Get PDF
    Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.National Human Genome Research Institute (U.S.) (Grant number 1U54HG004555-01)Wellcome Trust (London, England) (Grant number WT062023)Wellcome Trust (London, England) (Grant number WT077198

    20 years of research on the Alcator C-Mod tokamak

    Get PDF
    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060
    • 

    corecore