1,654 research outputs found

    Contractibility and Asset Ownership: On-Board Computers and Governance in U.S. Trucking

    Get PDF
    We investigate how the contractibility of actions affecting the value of an asset affects asset ownership. We examine this by testing how on-board computer (OBC) adoption affects truck ownership. We develop and test the proposition that adoption should lead to less ownership by drivers, particularly for hauls where drivers have the greatest incentive to drive in non-optimal ways or engage in rent-seeking behavior. We find evidence in favor: OBC adoption leads to less driver ownership, especially for long hauls and hauls that use specialized trailers. We also find that non-owner drivers with OBCs drive better than those without them. These results suggest that technology-enabled increases in contractibility may lead to less independent contracting and larger firms.

    Make Versus Buy in Trucking: Asset Ownership, Job Design and Information

    Get PDF
    Explaining patterns of asset ownership in the economy is a central goal of both organizational economics and industrial organization. We develop a model of asset ownership in trucking, which we test by examining how the adoption of different classes of on-board computers (OBCs) between 1987 and 1997 influenced whether shippers use their own trucks for hauls or contract with for-hire carriers. We find that OBCs' incentive-improving features pushed hauls toward private carriage, but their resource-allocation-improving features pushed them toward for-hire carriage. We conclude that ownership patterns in trucking reflect the importance of both incomplete contracts (Grossman and Hart (1986)) and of job design and measurement issues (Holmstrom and Milgrom (1994)).

    On the USCRN Temperature System

    Get PDF
    In 2004 a new aspirated surface air temperature system was officially deployed nationally in the U.S. Climate Reference Network (USCRN) commissioned by the National Oceanic and Atmospheric Admin- istration. The primary goal of the USCRN is to provide future long-term and high-quality homogeneous observations of surface air temperature and precipitation that can be coupled to past long-term observations for the detection and attribution of present and future climate change. In this paper two precision air temperature systems are included for evaluating the new USCRN air temperature system based on a 1-yr side-by-side field comparison. The measurement errors of the USCRN temperature sensor are systemati- cally analyzed, and the components of error attributable to the datalogger, lead wires, fixed resistors, and the temperature coefficient of the resistors are presented. Although the current configuration is adequate, a more desirable configuration of USCRN temperature sensor coupled with the datalogger is proposed as a means of further reducing the uncertainty for the USCRN temperature measurement

    Tone-activated, remote, alert communication system

    Get PDF
    Pocket sized transmitter, frequency modulated by crystal derived tones, with integral loop antenna provides police with easy operating alert signal communicator which uses patrol car radio to relay signal. Communication channels are time shared by several patrol units

    P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells.

    Get PDF
    P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation

    Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex

    Get PDF
    Oscillatory synchronization between somatosensory and motor cortex has previously been reported using field potential recordings, but interpretation of such results can be confounded by volume conduction. We examined coherence between single-unit discharge in somatosensory/parietal areas and local field potential from the same area as the unit, or from the motor cortex, in two macaque monkeys trained to perform a finger movement task. There were clear coherence peaks at ∼17.5 Hz for cells in the primary somatosensory cortex (both proprioceptive and cutaneous areas) and posterior parietal cortex (area 5). The size of coherence in all areas was comparable to previous reports analysing motor cortical cells and M1 field potentials. Many coherence phases clustered around –π/2 radians, indicating zero lag synchronization of parietal cells with M1 oscillatory activity. These results indicate that cells in somatosensory and parietal areas have information about the presence of oscillations in the motor system. Such oscillatory coupling across the central sulcus may play an important role in sensorimotor integration of both proprioceptive and cutaneous signals

    Toward large-scale Hybrid Monte Carlo simulations of the Hubbard model on graphics processing units

    Full text link
    The performance of the Hybrid Monte Carlo algorithm is determined by the speed of sparse matrix-vector multiplication within the context of preconditioned conjugate gradient iteration. We study these operations as implemented for the fermion matrix of the Hubbard model in d+1 space-time dimensions, and report a performance comparison between a 2.66 GHz Intel Xeon E5430 CPU and an NVIDIA Tesla C1060 GPU using double-precision arithmetic. We find speedup factors ranging between 30-350 for d = 1, and in excess of 40 for d = 3. We argue that such speedups are of considerable impact for large-scale simulational studies of quantum many-body systems.Comment: 8 pages, 5 figure

    Dynamic undocking and the quasi-bound state as tools for drug discovery

    Get PDF
    There is a pressing need for new technologies that improve the efficacy and efficiency of drug discovery. Structure-based methods have contributed towards this goal but they focus on predicting the binding affinity of protein–ligand complexes, which is notoriously difficult. We adopt an alternative approach that evaluates structural, rather than thermodynamic, stability. As bioactive molecules present a static binding mode, we devised dynamic undocking (DUck), a fast computational method to calculate the work necessary to reach a quasi-bound state at which the ligand has just broken the most important native contact with the receptor. This non-equilibrium property is surprisingly effective in virtual screening because true ligands form more-resilient interactions than decoys. Notably, DUck is orthogonal to docking and other ‘thermodynamic’ methods. We demonstrate the potential of the docking–undocking combination in a fragment screening against the molecular chaperone and oncology target Hsp90, for which we obtain novel chemotypes and a hit rate that approaches 40
    corecore