346 research outputs found

    Strain engineering in graphene by laser irradiation

    No full text
    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer

    A Gauge field Induced by the Global Gauge Invariance of Action Integral

    Full text link
    As a general rule, it is considered that the global gauge invariance of an action integral does not cause the occurrence of gauge field. However, in this paper we demonstrate that when the so-called localized assumption is excluded, the gauge field will be induced by the global gauge invariance of the action integral. An example is given to support this conclusion.Comment: 13 pages. Some typing errors are corrected and the format is update

    Acoustic phonon transport through a double-bend quantum waveguide

    Full text link
    In this work, using the scattering matrix method, we have investigated the transmission coefficients and the thermal conductivity in a double-bend waveguide structure. The transmission coefficients show strong resonances due to the scattering in the midsection of a double-bend structure; the positions and the widths of the resonance peaks are determined by the dimensions of the midsection of the structure. And the scattering in the double-bend structure makes the thermal conductivity decreases with the increasing of the temperature first, then increases after reaches a minimum. Furthermore, the investigations of the multiple double-bend structures indicate that the first additional double-bend structure suppresses the transmission coefficient and the frequency gap formed; and the additional double-bend structures determine the numbers of the resonance peaks at the frequency just above the gap region. These results could be useful for the design of phonon devices.Comment: 13 pages, 6 figures, elsart.cls is use

    Rotating day and night disturb growth hormone secretion profiles, body energy metabolism, and insulin levels in mice

    Get PDF
    Background: Insulin and growth hormone (GH) - 2 vital metabolic regulatory hormones - regulate glucose, lipid, and energy metabolism. These 2 hormones determine substrate and energy metabolism under different living conditions. Shift of day and night affects the clock system and metabolism probably through altered insulin and GH secretion. Methods: Five-week-old male mice were randomly assigned to a rotating light (RL) group (3-day normal light/dark cycle followed by 4-day reversed light/dark cycle per week) and normal light (NL) group. Body weight and food intake were recorded every week. Series of blood samples were collected for pulsatile GH analysis, glucose tolerance test, and insulin tolerance test at 9, 10, and 11 weeks from the start of intervention, respectively. Indirect calorimetric measurement was performed, and body composition was tested at 12 weeks. Expressions of energy and substrate metabolism-related genes were evaluated in pituitary and liver tissues at the end of 12-week intervention. Results: The RL group had an increased number of GH pulsatile bursts and reduced GH mass/burst. RL also disturbed the GH secretion regularity and mode. It suppressed insulin secretion, which led to a disturbed insulin/GH balance. It was accompanied by the reduced metabolic flexibility and modified gene expression involved in energy balance and substrate metabolism. Indirect calorimeter recording revealed that RL decreased the respiratory exchange ratio (RER) and oxygen consumption at the dark phase, which resulted in an increase in fat mass and free fatty acid levels in circulation. Conclusion: RL disturbed pulsatile GH secretion and decreased insulin secretion in male mice with significant impairment in energy, substrate metabolism, and body composition.Diabetes mellitus: pathophysiological changes and therap

    Effects of Exogenous Cellulase Source on In Vitro Fermentation Characteristics and Methane Production of Crop Straws and Grasses

    Get PDF
    In vitro fermentation experiments were conducted to investigate the effects of 3 sources of exogenous cellulase products (EC) at 4 dose rates (DR) (0, 12, 37 and 62 IU/g of DM) on degradation of forage and methane production by mixed rumen micro-organisms of goats. The maximum gas production (Vf) of grasses was higher (P<0.001) in Neocallimastix patriciarum (NP) group than those in Trichoderma reesei (TR) and Trichoderma longibrachiatum (TL) groups. Quadratic increases in dry matter degradation (DMD) of forage and neutral detergent fiber (NDFD) of straw were observed for all EC, with optimum DR in the low range. Supplementation of EC originated from TR and NP increased (P<0.001) DMD of forage compared to that from TL. Addition of EC originated from TR and NP also decreased pH value, ammonia nitrogen (NH3-N) and methane (CH4) production compared to that from TL. Quadratic decreases in pH value, NH3-N and CH4 of forage were noted for EC of TR and NP, and with optimum DR in the low range. For short chain fatty acid, the EC of NP increased total volatile fatty acid (TVFA) and acetate concentration and the ratio of acetate to propionate of forage compared with EC of TL and TR, and with optimum DR in the low to medium range. It was concluded that the source of EC differed in fiber degradation and methane emission, and with optimum DR of TR in the low range (from 12 to 37 U/g DM) in improving fiber degradation and decreasing methane emission

    Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics

    Get PDF
    The THz dielectric properties of MgTiO3–CaTiO3 ceramics are reported. The ceramics were prepared via a solid-state reaction route and the sintering conditions were optimized to obtain ceramics with high permittivity and low loss in the terahertz frequency domain. The amount of impurities (MgTi2O5) and grain size increased with increasing sintering temperature. The dielectric properties improved with increasing density, and the best terahertz dielectric performance was obtained at 1260 °C, with a permittivity of 17.73 and loss of 3.07×10−3. Ceramics sintered above 1260 °C showed a sharp increase in loss, which is ascribed to an increase in the impurity content

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method

    Full text link
    The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green's function techniques for transport. Ballistic phonon transport is investigated for different structures including graphene, graphene antidot lattices, and graphene nanoribbons. We demonstrate that this particular methodology is suitable for robust and efficient investigation of phonon transport in graphene-based devices. This methodology is especially useful for investigations of thermoelectric and heat transport applications.Comment: 23 pages, 9 figures, 1 tabl
    • …
    corecore