2,142 research outputs found

    Studies on hemorrhagic pneumonia in Moschus sifanicus

    Get PDF
    A series of investigations were carried out including epidemiology, etiology and pathology on hemorrhagic pneumonia in Moschus sifanicus, which had prevailed in Xinglong Mountain National Nature Reserve District in Gansu province of China. The results indicated that the prevalence of thisdisease could be correlated with local humidity in Xinglong Mountain in Gansu province of China. The disease is caused by single infection of Pasteurella multocida or mix of P. multocida, Escherichia coli and Pseudomonas aeruginosa, and is a contagious disease. The pathological changes were mainly manifested in the vessel wall of bronchia and bronchiole appeared congested, bleeding, edemic with infiltration of inflammatory cells, mucosa of bronchiole degenerates, with the presence of necrosis and exfoliation, pulmonary alveolus generated suppuration, disaggregation and necrosis. It was concluded that the diseases are mainly caused by local bacteria and affected M. sifanicus finally die of hemorrhagic or purulent, necrotic pneumonia

    Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS

    Get PDF
    A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary

    Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming

    Get PDF
    This paper deals with an analysis of the Conjugate Gradient (CG) method (Hestenes and Stiefel in J Res Nat Bur Stand 49:409-436, 1952), in the presence of degenerates on indefinite linear systems. Several approaches have been proposed in the literature to issue the latter drawback in optimization frameworks, including reformulating the original linear system or recurring to approximately solving it. All the proposed alternatives seem to rely on algebraic considerations, and basically pursue the idea of improving numerical efficiency. In this regard, here we sketch two separate analyses for the possible CG degeneracy. First, we start detailing a more standard algebraic viewpoint of the problem, suggested by planar methods. Then, another algebraic perspective is detailed, relying on a novel recently proposed theory, which includes an additional number, namely grossone. The use of grossone allows to work numerically with infinities and infinitesimals. The results obtained using the two proposed approaches perfectly match, showing that grossone may represent a fruitful and promising tool to be exploited within Nonlinear Programming

    Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii

    Get PDF
    Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii.Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M. wesenbergii, measured by means of optical density at 665 nm, were severely inhibited under an iron-limited condition, whereas they thrived under an iron-replete condition. The contents of chlorophyll-a, carotenoid, phycocyanin, and allophycocyanin under an iron-limited condition were lower than those under an iron-replete condition, and they all reached maximal contents on day 4 under the iron-limited condition. PS II photochemical efficiencies (maximal PS II quantum yield), saturating light levels (I-k ) and maximal electron transport rates (ETRmax) of M. aeruginosa and M. wesenbergii declined sharply under the iron-limited condition. The PS II photochemical efficiency and ETRmax of M. aeruginosa rose , whereas in the strain of M. wesenbergii, they declined gradually under the iron-replete condition. In addition, I-k of M. aeruginosa and M. wesenbergii under the iron-replete condition did not change obviously. Siderophore production of M. aeruginosa was higher than that of M. wesenbergii under the iron-limited condition. It was concluded that M. aeruginosa requires higher iron concentration for physiological and biochemical processes compared with M. wesenbergii, but its tolerance against too high a concentration of iron is weaker than M. wesenbergii

    Computational Analysis of HIV-1 Resistance Based on Gene Expression Profiles and the Virus-Host Interaction Network

    Get PDF
    A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection

    Carbon nanotube composites for glucose biosensor incorporated with reverse iontophoresis function for noninvasive glucose monitoring

    Get PDF
    Author name used in this publication: Yao, Yan-Dong.Version of RecordPublishe

    Recurrent stroke risk and cerebral microbleed burden in ischemic stroke and TIA A meta-analysis

    Get PDF
    OBJECTIVE: To determine associations between cerebral microbleed (CMB) burden with recurrent ischemic stroke (IS) and intracerebral hemorrhage (ICH) risk after IS or TIA. METHODS: We identified prospective studies of patients with IS or TIA that investigated CMBs and stroke (ICH and IS) risk during 3monthsfollowup.Authorsprovidedaggregatesummaryleveldataonstrokeoutcomes,withCMBscategorizedaccordingtoburden(single,24,and3 months follow-up. Authors provided aggregate summary-level data on stroke outcomes, with CMBs categorized according to burden (single, 2–4, and 5 CMBs) and distribution. We calculated absolute event rates and pooled risk ratios (RR) using randomeffects meta-analysis. RESULTS: We included 5,068 patients from 15 studies. There were 115/1,284 (9.6%) recurrent IS events in patients with CMBs vs 212/3,781 (5.6%) in patients without CMBs (pooled RR 1.8 for CMBs vs no CMBs; 95% confidence interval [CI] 1.4–2.5). There were 49/1,142 (4.3%) ICH events in those with CMBs vs 17/2,912 (0.58%) in those without CMBs (pooled RR 6.3 for CMBs vs no CMBs; 95% CI 3.5–11.4). Increasing CMB burden increased the risk of IS (pooled RR [95% CI] 1.8 [1.0–3.1], 2.4 [1.3–4.4], and 2.7 [1.5–4.9] for 1 CMB, 2–4 CMBs, and 5CMBs,respectively)andICH(pooledRR[95CMB,24CMBs,and5 CMBs, respectively) and ICH (pooled RR [95% CI] 4.6 [1.9–10.7], 5.6 [2.4–13.3], and 14.1 [6.9–29.0] for 1 CMB, 2–4 CMBs, and 5 CMBs, respectively). CONCLUSIONS: CMBs are associated with increased stroke risk after IS or TIA. With increasing CMB burden (compared to no CMBs), the risk of ICH increases more steeply than that of IS. However, IS absolute event rates remain higher than ICH absolute event rates in all CMB burden categories

    Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties

    Get PDF
    As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict the transcriptional activity for one-, two-, three- and four-site p53 mutants, respectively. With the approach from the general form of pseudo amino acid composition, we used eight types of features to represent the mutation and then selected the optimal prediction features based on the maximum relevance, minimum redundancy, and incremental feature selection methods. The Mathew's correlation coefficients (MCC) obtained by using nearest neighbor algorithm and jackknife cross validation for one-, two-, three- and four-site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively. It was revealed by the further optimal feature set analysis that the 2D (two-dimensional) structure features composed the largest part of the optimal feature set and maybe played the most important roles in all four types of p53 mutant active status prediction. It was also demonstrated by the optimal feature sets, especially those at the top level, that the 3D structure features, conservation, physicochemical and biochemical properties of amino acid near the mutation site, also played quite important roles for p53 mutant active status prediction. Our study has provided a new and promising approach for finding functionally important sites and the relevant features for in-depth study of p53 protein and its action mechanism
    corecore