Shi and Liao *Journal of Inequalities and Applications* (2015) 2015:363 DOI 10.1186/s13660-015-0885-z

RESEARCH

 Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

Solutions of the equilibrium equations with finite mass subject

Junguo Shi^{1*} and Yadong Liao²

*Correspondence: junguoshi@qq.com ¹College of Finance and Statistics, Hunan University, Changsha, Hunan 410079, China Full list of author information is available at the end of the article

Abstract

In this paper, we investigate the slow equilibrium equations with finite mass subject to a homogeneous Neumann type boundary condition. Based on an auxiliary function method and a differential inequality technique, the existence of equilibrium equations is obtained if the angular is bounded and the blow-up occurs in finite time.

Keywords: axisymmetric; Neumann type boundary condition; finite mass

1 Introduction

In 3-D space, the equilibrium equations for a self-gravitating fluid rotating about the x_3 axis with prescribed velocity $\Omega(r)$ can be written

$$\begin{cases} \nabla P = \rho \nabla (-\Phi + \int_0^r s \Omega^2(s) \, ds), \\ \Delta \Phi = 4\pi g \rho. \end{cases}$$
(1.1)

Here ρ , g, and Φ denote the density, gravitational constant, and gravitational potential, respectively, P is the pressure of the fluid at a point $x \in \mathbb{R}^3$, $r = \sqrt{x_1^2 + x_2^2}$. We want to find axisymmetric equilibria and therefore always assume that $\rho(x) = \rho(r, x_3)$.

For a density ρ , from $(1.1)_2$ we can obtain the induced potential

$$\Phi_{\rho}(x) = -g \int \frac{\rho(y)}{|x - y|} \, dy.$$
(1.2)

Obviously, Φ_{ρ} is decreasing when ρ is increasing.

In the study of this model, Auchmuty and Beals [1] proved the existence of the equilibrium solution if the angular velocity satisfies certain decay conditions. For constant angular velocity, Miyamoto [2] have found that there exists an equilibrium solution if the angular velocity is less than a certain constant and there is no equilibrium for large velocity. Huang and Liu [3] addressed the exact numbers of stationary solutions. Many other interesting results exist; see [4, 5].

In more general conditions than in [2], we prove that there exists an equilibrium solution under the following constraint set:

$$\mathcal{A}_{M} := \left\{ \rho \mid \rho \ge 0, \rho \text{ is axisymmetric, } \int \rho \, dx = M \right\}.$$
(1.3)

A standard method to obtain steady states is to prescribe the minimizer of the stellar energy functional. The main problem is to show the steady state has finite mass and compact support. To approach this problem, we define the energy functional,

$$F(\rho) \coloneqq \int Q(\rho) \, dx - \int \rho J(r) \, dx - \frac{g}{2} \int \int \frac{\rho(x)\rho(y)}{|x-y|} \, dy \, dx. \tag{1.4}$$

Here

$$Q(\rho) = \frac{1}{\gamma - 1} P, \qquad J(r) = \int_0^r s \Omega^2(s) \, ds.$$
(1.5)

In this paper, we assume J(r) is nonnegative, continuous, and bounded on $[0, +\infty)$. *P* is nonnegative, continuous, and strictly increasing for *s* > 0, and satisfies:

P₁:
$$\lim_{\rho \to 0} P(\rho) \rho^{-1} = 0$$
, $\lim_{\rho \to +\infty} P(\rho) \rho^{-\frac{4}{3}} = +\infty$.

In Section 2, first we prove the existence of a minimizer of the energy functional F in \mathcal{A}_M . Then we give the properties of minimizers, they are stationary solutions of (1.1) with finite mass and compact support. The main difficulty in the proof is the loss of compactness due to the unboundedness of \mathbb{R}^3 . To prevent mass from running off to spatial infinity along a minimizing sequence, our variational approach is related to the concentration-compactness principle due to Qiao [5]. Many other interesting results exist; see [6–9].

Throughout this paper, for simplicity of presentation, we use \int to denote $\int_{\mathbb{R}^3}$, and we use $\|\cdot\|_p$ to denote $\|\cdot\|_{L^p(\mathbb{R}^3)}$. Define

$$B_{R}(x) := \left\{ y \in \mathbb{R}^{3} \mid |y - x| \le R \right\}, \qquad B_{R,K}(x) := \left\{ y \in \mathbb{R}^{3} \mid R \le |y - x| \le K \right\},$$

$$F_{\text{pot}}(\rho) := -\frac{g}{2} \int \int \frac{\rho(x)\rho(y)}{|x - y|} \, dy \, dx = -\frac{1}{8\pi g} \int |\nabla \Phi_{\rho}|^{2} \, dx < 0.$$
(1.6)

Let *C* denote a generic positive constant. χ is the indicator function.

2 Minimizer of the energy

In this section, we present some properties of the functional F, and we prove the existence of minimizer. It is easy to verify that the function F is invariant under any vertical shift. That is, if $\rho \in A_M$, then $T\rho(x) := \rho(x + ae_3) \in A_M$ and $F(T\rho) = F(\rho)$ for any $a \in \mathbb{R}$. Here $e_3 =$ (0, 0, 1). Therefore, if (ρ_n) is a minimizing sequence of F in A_M , then $(T\rho_n)$ is a minimizing sequence of F in A_M too. First we give some estimates.

Lemma 2.1 Assume
$$\rho \in L^1 \cap L^{\gamma}(\mathbb{R}^3)$$
. If $1 \leq \gamma \leq \frac{3}{2}$, then $\Phi \in L^r(\mathbb{R}^3)$ for $3 < r < \frac{3\gamma}{3-2\gamma}$, and

$$\|\Phi\|_{r} \le C \Big(\|\rho\|_{1}^{\alpha} \|\rho\|_{\gamma}^{1-\alpha} + \|\rho\|_{1}^{\beta} \|\rho\|_{\gamma}^{1-\beta} \Big),$$
(2.1)

where $0 < \alpha, \beta < 1$. If $\gamma > \frac{3}{2}$, then Φ is bounded and continuous and satisfies (2.1) with $r = +\infty$.

Proof The proof can be found in [1].

Lemma 2.2 Assume $\rho \in L^1 \cap L^{\frac{4}{3}}(\mathbb{R}^3)$, then $\nabla \Phi \in L^2(\mathbb{R}^3)$.

Proof The interpolation inequality implies

$$\|\rho\|_{\frac{6}{7}} \le \|\rho\|_1^{1/3} \|\rho\|_{4/3}^{2/3}.$$

By Sobolev's theorem, $\|\Phi\|_6 \leq C \|\rho\|_{\frac{6}{2}}$. So

$$\|\nabla\Phi\|_{2}^{2} = 4\pi g \|\rho\Phi\|_{1} \le C \|\rho\|_{\frac{6}{5}} \|\Phi\|_{6} \le C \|\rho\|_{\frac{6}{5}}^{2}$$

From the above estimates we can complete our proof.

Lemma 2.3 Assume P_1 hold, then there exists a nonnegative constant C, which depends only on $\frac{1}{|x|}$, M, and J(r) such that $F \ge -C$.

Proof For $\rho \in A_M$, since P₁ holds, similar to [2], we know that there exists a constant $S_1 > 0$, such that

$$\begin{split} F(\rho) &\geq \int_{\rho < S_1} Q(\rho) + \int_{\rho \ge S_1} Q(\rho) - M \|J\|_{\infty} - CM^{2/3} \int \rho^{4/3} \\ &\geq \int_{\rho < S_1} Q(\rho) + \frac{1}{2} \int_{\rho \ge S_1} Q(\rho) - M \|J\|_{\infty} - CM^{2/3} \int_{\rho < S_1} \rho^{4/3} \\ &\geq \frac{1}{2} \int Q(\rho) - M \|J\|_{\infty} - CM^{5/3} S_1^{1/3}. \end{split}$$

So $F \ge -C_1$, here $C_1 = M ||J||_{\infty} - CM^{5/3} S_1^{1/3}$.

Let $h_M = \inf_{\mathcal{A}_M} F$, a simple scaling argument shows that $h_M < 0$: let $\overline{\rho}(x) = \varepsilon^3 \rho(\varepsilon x)$, then $\int \overline{\rho} = \int \rho$. Since $\lim_{\rho \to 0} Q(\rho) \rho^{-1} = 0$, it is easy to see that, for ε small enough, $\int Q(\overline{\rho}) = \int \varepsilon^{-3} Q(\varepsilon^3 \rho) \to 0$. Therefore $h_M < 0$.

Lemma 2.4 Assume P_1 holds, then, for every $0 < \widetilde{M} \le M$, we have $h_{\widetilde{M}} \ge \left(\frac{\widetilde{M}}{M}\right)^{\frac{5}{3}} h_M$.

Proof Let $\tilde{\rho}(x) = \rho(ax)$, $\tilde{J}(r) = J(ax)$ here $a = (M/\overline{M})^{1/3} \ge 1$. So, for any $\rho \in \mathcal{A}_M$ and $\tilde{\rho} \in \mathcal{A}_{\overline{M}}$, we have

$$F(\widetilde{\rho}) = \int Q(\widetilde{\rho}) - \int \widetilde{\rho} \widetilde{J} + F_{\text{pot}}(\widetilde{\rho}) \ge b^{-3} F(\rho), \qquad (2.2)$$

the mappings $\mathcal{A}_M \to \mathcal{A}_{\widetilde{M}}$, $\rho \to \widetilde{\rho}$, $J \to \widetilde{J}$ are all one to one and onto; this completes our proof.

From Lemma 2.3 we immediately find that any minimizing sequence $(\rho_n)_{n=1}^{\infty} \in \mathcal{A}_M$ of *F* satisfies

$$\int \rho_n^{4/3} = \int_{\rho_n < S_1} \rho_n^{4/3} + \int_{\rho_n \ge S_1} \rho_n^{4/3} < MS_1^{1/3} + \int cQ(\rho_n) < 2cF(\rho_n) + C + MS_1^{1/3}.$$

Lemma 2.5 Let $(\rho_n)_{n=1}^{\infty}$ be bounded in $L^{4/3}(\mathbb{R}^3)$ and $\rho_n \rightharpoonup \rho_0$ weakly in $L^{4/3}(\mathbb{R}^3)$, then, for any R > 0,

$$\int |\nabla \Phi_{\chi_{B_R}\rho_n}|^2 dx \to \int |\nabla \Phi_{\chi_{B_R}\rho_0}|^2 dx.$$

 \Box

Proof By the Sobolev theorem and Lemma 2.1 we can complete the proof.

Lemma 2.6 Assume P_1 holds, let $(\rho_n)_{n=1}^{\infty} \subset \mathcal{A}_M$ be a minimizing sequence of $F(\rho)$. Then there exist a sequence $(a_n)_{n=1}^{\infty} \subset \mathbb{R}^3$ and $\delta_0 > 0$, $R_0 > 0$ such that

$$\int_{a_n+B_R}\rho_n(x)\,dx\geq\delta_0,\quad R\geq R_0,$$

for all sufficient large $n \in \mathbb{N}$.

Proof Split the potential energy:

$$\begin{aligned} -\frac{2}{g}F_{\text{pot}} &:= \int \int_{|x-y| \le 1/R} \frac{\rho_n(x)\rho_n(y)}{|x-y|} \, dy \, dx + \int \int_{1/R < |x-y| < R} \dots + \int \int_{|x-y| \ge R} \dots \\ &:= I_1 + I_2 + I_3. \end{aligned}$$

From Lemma 2.2 we easily know $I_1 \leq \frac{C}{R}$. The estimates for I_2 and I_3 are straightforward:

$$I_{2} \leq R \int \int_{|x-y| < R} \rho_{n}(x)\rho_{n}(y) \, dx \, dy \leq MR \sup_{a \in \mathbb{R}^{3}} \int_{a+B_{R}} \rho_{n}(x) \, dx,$$
$$I_{3} = \int \int_{|x-y| \geq R} \frac{\rho(x)\rho(y)}{|x-y|} \, dy \, dx \leq \frac{M^{2}}{R}.$$

Therefore

$$\sup_{a\in\mathbb{R}^3}\int_{a+B_R}\rho_n(x)\,dx\geq \frac{1}{MR}\left(-\frac{2}{g}F_{\text{pot}}-\frac{M^2}{R}-\frac{C}{R}\right).$$
(2.3)

We know $F_{\text{pot}}(\rho_n) < 0$ from (1.6). Thus when *R* is large enough, $-F_{\text{pot}} > 0$ dominates the sign of (2.3), so there exist $\delta_0 > 0$, $R_0 > 0$ as required.

We are now ready to show the existence of a minimizer of h_M as P₁ holds.

Theorem 2.1 Assume P₁ holds. Let $(\rho_n)_{n=1}^{\infty} \in \mathcal{A}_M$ be a minimizing sequence of *F*. Then there exist a subsequence, still denoted by $(\rho_n)_{n=1}^{\infty}$, and a sequence of translations $T\rho_n := \rho_n(\cdot + a_n e_3)$, where a_n are constants and $e_3 = (0, 0, 1)$, such that

$$F(\rho_0) = \inf_{\mathcal{A}_M} F(\rho) = h_M$$

and $T\rho_n \rightarrow \rho_0$ weakly in $L^{\frac{4}{3}}(\mathbb{R}^3)$. For the induced potentials we have $\nabla \Phi_{T\rho_n} \rightarrow \nabla \Phi_{\rho_0}$ strongly in $L^2(\mathbb{R}^3)$.

Remark 2.1 Without admitting the spatial shifts, the assertion of the theorem is false: given a minimizer ρ_0 and a sequence of shift vectors $(a_n e_3) \in \mathbb{R}^3$, the functional F is translation invariant, that is, $F(T\rho) = F(\rho)$. But if $|a_n e_3| \to \infty$ this minimizing sequence converges weakly to zero, which is not in \mathcal{A}_M .

Proof Split $\rho \in A_M$ into three different parts:

$$\rho = \chi_{B_{R_1}} \rho + \chi_{B_{R_1,R_2}} \rho + \chi_{B_{R_2,\infty}} \rho := \rho_1 + \rho_2 + \rho_3$$

with

$$I_{lm} := \int \int \frac{\rho_l(x)\rho_m(y)}{|x-y|} \, dy \, dx, \quad l, m = 1, 2, 3,$$

thus

$$F(\rho) := F(\rho_1) + F(\rho_2) + F(\rho_3) - I_{12} - I_{13} - I_{23}.$$

If we choose $R_2 > 2R_1$, then

$$I_{13} \leq 2 \int_{B_{R_1}} \rho(x) \, dx \int_{B_{R_2,\infty}} |y|^{-1} \rho(y) \, dy \leq \frac{C_1}{R_2}.$$

Next we estimate *I*₁₂ and *I*₂₃:

$$I_{12} + I_{23} = -\int \rho_1 \Phi_2 \, dx - \int \rho_2 \Phi_3 \, dx = \frac{1}{4\pi g} \int \nabla (\Phi_1 + \Phi_3) \cdot \nabla \Phi_2 \, dx$$

$$\leq C_2 \|\rho_1 + \rho_3\|_{\frac{6}{5}} \|\nabla \Phi_2\|_2 \leq C_3 \|\nabla \Phi_2\|_2,$$

where $\Phi_l = \Phi_{\rho_l}$.

Define $M_l = \int \rho_l$, l = 1, 2, 3, then $M = M_1 + M_2 + M_3$. Using the above estimates and Lemma 2.4, we have

$$h_{M} - F(\rho) \leq \left(1 - \left(\frac{M_{1}}{M}\right)^{5/3} - \left(\frac{M_{2}}{M}\right)^{5/3} - \left(\frac{M_{3}}{M}\right)^{5/3}\right)h_{M} + \frac{C_{1}}{R_{2}} + C_{3}\|\nabla\Phi_{2}\|_{2}$$
$$\leq C_{4}h_{M}M_{1}M_{3} + C_{5}\left(\frac{1}{R_{2}} + \|\nabla\Phi_{2}\|_{2}\right), \tag{2.4}$$

here C_4 , C_5 are positive and depend on M but not on R_1 or R_2 . Let $(\rho_n) \in \mathcal{A}_M$ be a minimizing sequence and $(a_n e_3) \in \mathbb{R}^3$, such that Lemma 2.6 holds. Since F is translation invariant, the sequence $(T\rho_n)$ is a minimizing sequence too. So $||T\rho_n||_1 \leq M$. Thus there exists a subsequence, denoted by $(T\rho_n)$ again, such that $T\rho_n \rightharpoonup \rho_0$ weakly in $L^{\frac{4}{3}}(\mathbb{R}^3)$. By Mazur's lemma and Fatou's lemma

$$\int Q(\rho_0) dx \le \liminf_{n \to \infty} \int Q(T\rho_n) dx.$$
(2.5)

Now we want to show that

$$\nabla \Phi_{T\rho_n} \to \nabla \Phi_{\rho_0} \quad \text{strongly in } L^2(\mathbb{R}^3).$$
 (2.6)

Due to Lemma 2.5, $\nabla \Phi_{T\rho_{n,1}+T\rho_{n,2}}$ converges strongly in $L^2(B_{R_2})$. Therefore we only need to show that, for any $\varepsilon > 0$,

$$\int |\nabla \Phi_{T\rho_{n,3}}|^2 \, dx < \varepsilon.$$

By Lemmas 2.1 and 2.2, it suffices to prove

$$\int T\rho_{n,3}\,dx < \varepsilon. \tag{2.7}$$

Choose $R_0 < R_1$, we see that $M_{n,1} \ge \delta_0$ for *n* large enough from Lemma 2.6. By (2.4), we have

$$-C_4 h_M \delta_0 M_{n,3} \le -C_4 h_M M_{n,1} M_{n,3}$$

$$\le \frac{C_5}{R_2} + C_5 \|\nabla \Phi_{0,2}\|_2 + C_5 \|\nabla \Phi_{n,2} - \nabla \Phi_{0,2}\|_2 + |F(T\rho_n) - h_M|, \qquad (2.8)$$

where $\Phi_{n,l}$ is the potential induced by $T\rho_{n,l}$, which in turn has mass $M_{n,l}$, $n \in \mathbb{N} \cup \{0\}$, and the index l = 1, 2, 3 refers to the splitting.

Given any $\varepsilon > 0$. By Lemma 2.6 we can increase $R_1 > R_0$ such that $C_5 ||\nabla \Phi_{0,2}||_2 < \varepsilon/4$. Next choose $R_2 > 2R_1$ such that the first term in (2.8) is less than $\varepsilon/4$. Now that R_1 and R_2 are fixed, the third term converges to zero by Lemma 2.5. Since $(T\rho_n)$ is minimizing sequence, $|F(T\rho_n) - h_M| < \varepsilon/4$ for suitable *n*. If *n* is sufficiently large, then we have

$$-C_4 h_M \delta_0 M_{n,3} \leq \varepsilon$$
, *i.e.* $M_{n,3} \leq \varepsilon$

thus (2.7) holds, (2.6) follows, and

$$M \ge \int_{a_n+B_{R_2}} T\rho_n = M - M_{n,3} \ge M - \varepsilon.$$

Since $T\rho_n \rightarrow \rho_0$ weakly in $L^1(\mathbb{R}^N)$, for any $\varepsilon > 0$, there exists R > 0 such that

$$M \ge \int_{B_R} \rho_0 \ge M - \varepsilon,$$

thus

$$\rho_0 \in L^1(\mathbb{R}^N) \quad \text{with } \int \rho_0 \, dx = M,$$

so $\rho_0 \in \mathcal{A}_M$. Together with (2.5) we obtain

$$F(\rho_0) = \inf_{\mathcal{A}_M} F = h_M.$$

The proof is completed.

Next we show that the minimizers obtained above are steady states of (1.1).

Theorem 2.2 Let $\rho_0 \in A_M$ be a minimizer of $F(\rho)$ with induced potential Φ_0 . Then

 $\Phi_0 + Q'(\rho_0) - J(r) = K_0$ on the support of ρ_0 ,

where K_0 is a constant. Furthermore, ρ_0 satisfies (1.1).

Proof We will derive the Euler-Lagrange equation for the variational problem. Let $\rho_0 \in \mathcal{A}_M$ be a minimizer with induced potential Φ_0 . For any $\varepsilon > 0$, we define

$$V_{\varepsilon} \coloneqq \left\{ x \in \mathbb{R}^3 \mid \varepsilon \le \rho_0 \le \frac{1}{\varepsilon} \right\}.$$

For a test function $\omega \in L^{\infty}(\mathbb{R}^3)$ which has compact support and is nonnegative on V^c_{ε} , define

$$\rho_{\tau} := \rho_0 + \tau \omega - \tau \frac{\int \omega \, dy}{\operatorname{meas}(V_{\varepsilon})} \chi_{V_{\varepsilon}},$$

where $\tau \ge 0$ is small, such that

$$\rho_{\tau} \geq 0, \quad \int \rho_{\tau} = \int \rho_0 = M.$$

Therefore $\rho_{\tau} \in \mathcal{A}_{\mathcal{M}}$. Since ρ_0 is a minimizer of $F(\rho)$, we have

$$0 \leq F(\rho_{\tau}) - F(\rho_{0})$$

$$= \int Q(\rho_{\tau}) - Q(\rho_{0}) dx - \int J(r)(\rho_{\tau} - \rho_{0}) + \frac{1}{2} \int (\rho_{\tau} \Phi_{\tau} - \rho_{0} \Phi_{0}) dx$$

$$\leq \int (Q'(\rho_{0}) - J(r))(\rho_{\tau} - \rho_{0}) dx + \int (\rho_{\tau} \Phi_{0} - \rho_{0} \Phi_{0}) dx + o(\tau)$$

$$= \tau \int (Q'(\rho_{0}) - J(r) + \Phi_{0}) \left(\omega - \frac{\int \omega dy}{\operatorname{meas}(V_{\varepsilon})} \chi_{V_{\varepsilon}}\right) dx + o(\tau).$$

Hence

$$\int \left[Q'(\rho_0) - J(r) + \Phi_0 - \frac{1}{\operatorname{meas}(V_{\varepsilon})} \left(\int_{V_{\varepsilon}} Q'(\rho_0) - J(r) + \Phi_0 \, dy\right)\right] \omega \, dx \ge 0.$$

This holds for all test functions ω positive and negative on V_{ε} as specified above, hence, for all $\varepsilon > 0$ small enough,

$$Q'(\rho_0) - J(r) + \Phi_0 = K_{\varepsilon} \quad \text{on } V_{\varepsilon} \quad \text{and} \quad Q'(\rho_0) - J(r) + \Phi_0 \ge K_{\varepsilon} \quad \text{on } V_{\varepsilon}^c, \tag{2.9}$$

where K_{ε} is constant. Taking $\varepsilon \to 0$, we get

$$Q'(\rho_0) - J(r) + \Phi_0 = K_0$$
 on the support of ρ_0 . (2.10)

By taking the gradient on both sides of (2.10), we can prove that ρ_0 satisfies the equilibrium equation (1.1).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

¹College of Finance and Statistics, Hunan University, Changsha, Hunan 410079, China. ²Mathematical and Statistical Sciences, Jagiellonian University, ul. Profesora Łojasiewicza 6, Kraków, 30-348, Poland.

Received: 9 April 2015 Accepted: 24 October 2015 Published online: 16 November 2015

References

- 1. Auchmuty, G, Beals, R: Variational solutions of some nonlinear free boundary problems. Arch. Ration. Mech. Anal. 43, 255-271 (1971)
- 2. Miyamoto, I: Multiply transitive permutation groups and odd primes. Osaka J. Math. 11, 9-13 (1974)
- 3. Huang, J, Liu, Y: The boundedness of multilinear Calderón-Zygmund operators on Hardy spaces. Proc. Indian Acad. Sci. Math. Sci. **123**(3), 383-392 (2013)
- Miyamoto, I: A combinatorial approach to doubly transitive permutation groups. Tohoku Math. J. 308(14), 3073-3081 (2008)
- 5. Qiao, L: Asymptotic analysis of a coupled nonlinear parabolic system. Front. Math. China 3(1), 87-99 (2008)
- 6. Fang, Z, Yang, R, Chai, Y: Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption. Math. Probl. Eng. **2014**, Article ID 764248 (2014)
- 7. Fang, Z, Zhang, J: Influence of weight functions to a nonlocal *p*-Laplacian evolution equation with inner absorption and nonlocal boundary condition. J. Inequal. Appl. **2013**, 301 (2013)
- Ren, YD: On the Burkholder-Davis-Gundy inequalities for continuous martingales. Stat. Probab. Lett. 78(17), 3034-3039 (2008)
- 9. Yoshida, H: Non-existence of the modified first integral by symplectic integration methods. Phys. Lett. A 282(2), 276-283 (2001)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com