68 research outputs found

    Trajectory Series Analysis based Event Rule Induction for Visual Surveillance

    Full text link
    In this paper, a generic rule induction framework based on trajectory series analysis is proposed to learn the event rules. First the trajectories acquired by a tracking system are mapped into a set of primitive events that represent some basic motion patterns of moving object. Then a min-imum description length (MDL) principle based grammar induction algorithm is adopted to infer the meaningful rules from the primitive event series. Compared with previous grammar rule based work on event recognition where the rules are all defined manually, our work aims to learn the event rules automatically. Experiments in a traffic cross-road have demonstrated the effectiveness of our methods. Shown in the experimental results, most of the grammar rules obtained by our algorithm are consistent with the ac-tual traffic events in the crossroad. Furthermore the traffic lights rule in the crossroad can also be leaned correctly with the help of eliminating the irrelevant trajectories. 1

    Cast Shadow Removal with GMM for Surface Reflectance Component

    Full text link
    Cast shadow on the background is generated by an object moving between a light source and the background. The position and illumination of the source always change with time, while the background is stable. Therefore, features connected with light source always change with time, such as geometry and color. In this paper, we present a shadow removal method by homomorphic model to extract surface reflectance component, which is only connected with background of the scene and is robust to change of light source. We assume that reflectance component fits Gaussian distribution, and then use GMM to model it. Experimental results show that, except dealing with shadow, our method is not sensitive to the change of illumination

    Relationship between the Composition of Flavonoids and Flower Colors Variation in Tropical Water Lily (Nymphaea) Cultivars

    Get PDF
    Water lily, the member of the Nymphaeaceae family, is the symbol of Buddhism and Brahmanism in India. Despite its limited researches on flower color variations and formation mechanism, water lily has background of blue flowers and displays an exceptionally wide diversity of flower colors from purple, red, blue to yellow, in nature. In this study, 34 flavonoids were identified among 35 tropical cultivars by high-performance liquid chromatography (HPLC) with photodiode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS). Among them, four anthocyanins: delphinidin 3-O-rhamnosyl-5-O-galactoside (Dp3Rh5Ga), delphinidin 3-O-(2″-O-galloyl-6″-O-oxalyl-rhamnoside) (Dp3galloyl-oxalylRh), delphinidin 3-O-(6″-O-acetyl-β-glucopyranoside) (Dp3acetylG) and cyanidin 3- O-(2″-O-galloyl-galactopyranoside)-5-O-rhamnoside (Cy3galloylGa5Rh), one chalcone: chalcononaringenin 2′-O-galactoside (Chal2′Ga) and twelve flavonols: myricetin 7-O-rhamnosyl-(1→2)-rhamnoside (My7RhRh), quercetin 7-O-galactosyl-(1→2)-rhamnoside (Qu7GaRh), quercetin 7-O-galactoside (Qu7Ga), kaempferol 7-O-galactosyl-(1→2)-rhamnoside (Km7GaRh), myricetin 3-O-galactoside (My3Ga), kaempferol 7-O-galloylgalactosyl-(1→2)-rhamnoside (Km7galloylGaRh), myricetin 3-O-galloylrhamnoside (My3galloylRh), kaempferol 3-O-galactoside (Km3Ga), isorhamnetin 7-O-galactoside (Is7Ga), isorhamnetin 7-O-xyloside (Is7Xy), kaempferol 3-O-(3″-acetylrhamnoside) (Km3-3″acetylRh) and quercetin 3-O-acetylgalactoside (Qu3acetylGa) were identified in the petals of tropic water lily for the first time. Meanwhile a multivariate analysis was used to explore the relationship between pigments and flower color. By comparing, the cultivars which were detected delphinidin 3-galactoside (Dp3Ga) presented amaranth, and detected delphinidin 3′-galactoside (Dp3′Ga) presented blue. However, the derivatives of delphinidin and cyanidin were more complicated in red group. No anthocyanins were detected within white and yellow group. At the same time a possible flavonoid biosynthesis pathway of tropical water lily was presumed putatively. These studies will help to elucidate the evolution mechanism on the formation of flower colors and provide theoretical basis for outcross breeding and developing health care products from this plant

    Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    Get PDF
    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants

    TH-2 satellite engineering design and implementation

    No full text
    The TH-2 satellite system is China's first microwave surveying satellite system based on interferometric synthetic aperture radar technology, and is also China's first short-range formation satellite system. It is the second microwave interferometric surveying satellite system after the German's TanDEM-X system in the world. A method to solve the problem of absolute ambiguity in the interference phase by designing dual-frequency imaging is proposed for the first time in the world, which completely got rid of the dependence on ground control data. The system works in the X band, with the resolution of 3 m and a solar synchronous orbit of 500 km. It is composed of two equal satellites. It adopts a technical system of satellite formation in different orbits and a bistatic radar transceiver mode. It can measure the global digital surface models and acquire radar orthophotos in a short time. In this paper, through the selection of the interference baseline system, satellite formation configuration and radar transceiver mode, the technical system of TH-2 satellite is proposed. The engineering design is carried out from three aspects:system mission, main performance and composition. The implementation of the project is expounded from the three stages of the overall demonstration, the key technical research and verification, and project development. Finally, the on-orbit test and verification of the satellite system is introduced. Test results show that all indicators have reached the requirements of engineering design, products' precision is equivalent to TanDEM -X system and can meet the 1:50 000 scale mapping accuracy. These verify the TH-2 satellite' engineering design ideas correct and the method of project implementation reasonable and feasible

    VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis

    No full text
    Abstract Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen’s regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection
    • …
    corecore