92 research outputs found

    Bacterial group II introns in a deep-sea hydrothermal vent environment

    Get PDF
    Author Posting. © American Society for Microbiology, 2002. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 68 (2002): 6392-6398, doi:10.1128/AEM.68.12.6392-6398.2002.Group II introns are catalytic RNAs and mobile retrotransposable elements known to be present in the genomes of some nonmarine bacteria and eukaryotic organelles. Here we report the discovery of group II introns in a bacterial mat sample collected from a deep-sea hydrothermal vent near 9°N on the East Pacific Rise. One of the introns was shown to self-splice in vitro. This is the first example of marine bacterial introns from molecular population structure studies of microorganisms that live in the proximity of hydrothermal vents. These types of mobile genetic elements may prove useful in improving our understanding of bacterial genome evolution and may serve as valuable markers in comparative studies of bacterial communities.This research was supported by a WHOI Townsend postdoctoral scholarship to M.P., by National Science Foundation grant OCE-9712233 to L.M., by NIH grant GM31480 and grant I-1211 from the Robert A. Welch Foundation to P.S.P., and by NASA Astrobiology Cooperative Agreement NCC2-1054 and continuing support from the Unger G. Vetlesen Foundation to M.L.S

    Sodium-Glucose Cotransporter 2 Inhibitors and the Risk of Pneumonia and Septic Shock

    Get PDF
    CONTEXT: Individuals with type 2 diabetes mellitus (DM) have an increased risk of pneumonia and septic shock. Traditional glucose-lowering drugs have recently been found to be associated with a higher risk of infections. It remains unclear whether sodium-glucose cotransporter 2 inhibitors (SGLT2is), which have pleiotropic/anti-inflammatory effects, may reduce the risk of pneumonia and septic shock in DM. METHODS: MEDLINE, Embase, and ClinicalTrials.gov were searched from inception up to May 19, 2022, for randomized, placebo-controlled trials of SGLT2i that included patients with DM and reported outcomes of interest (pneumonia and/or septic shock). Study selection, data extraction, and quality assessment (using the Cochrane Risk of Bias Assessment Tool) were conducted by independent authors. A fixed-effects model was used to pool the relative risk (RRs) and 95% CI across trials. RESULTS: Out of 4568 citations, 26 trials with a total of 59 264 patients (1.9% developed pneumonia and 0.2% developed septic shock) were included. Compared with placebo, SGLT2is significantly reduced the risk of pneumonia (pooled RR 0.87, 95% CI 0.78-0.98) and septic shock (pooled RR 0.65, 95% CI 0.44-0.95). There was no significant heterogeneity of effect size among trials. Subgroup analyses according to the type of SGLT2i used, baseline comorbidities, glycemic control, duration of DM, and trial follow-up showed consistent results without evidence of significant treatment-by-subgroup heterogeneity (all P(heterogeneity) > .10). CONCLUSION: Among DM patients, SGLT2is reduced the risk of pneumonia and septic shock compared with placebo. Our findings should be viewed as hypothesis generating, with concepts requiring validation in future studies

    Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells

    Get PDF
    Covalent modification of DNA distinguishes cellular identities and is crucial for regulating the pluripotency and differentiation of embryonic stem (ES) cells. The recent demonstration that 5-methylcytosine (5-mC) may be further modified to 5-hydroxymethylcytosine (5-hmC) in ES cells has revealed a novel regulatory paradigm to modulate the epigenetic landscape of pluripotency. To understand the role of 5-hmC in the epigenomic landscape of pluripotent cells, here we profile the genome-wide 5-hmC distribution and correlate it with the genomic profiles of 11 diverse histone modifications and six transcription factors in human ES cells. By integrating genomic 5-hmC signals with maps of histone enrichment, we link particular pluripotency-associated chromatin contexts with 5-hmC. Intriguingly, through additional correlations with defined chromatin signatures at promoter and enhancer subtypes, we show distinct enrichment of 5-hmC at enhancers marked with H3K4me1 and H3K27ac. These results suggest potential role(s) for 5-hmC in the regulation of specific promoters and enhancers. In addition, our results provide a detailed epigenomic map of 5-hmC from which to pursue future functional studies on the diverse regulatory roles associated with 5-hmC

    TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Get PDF
    Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC). Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression.clos

    Spatiotemporal DNA methylome dynamics of the developing mouse fetus

    Get PDF
    Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial.

    Get PDF
    Mortality and disability following ischemic stroke (IS) remains unacceptably high with respect to the conventional therapies. This study tested the effect of erythropoietin (EPO) on long-term neurological outcome in patients after acute IS. This study aimed to evaluate the safety and efficacy of two consecutive doses of EPO (5,000 IU/dose, subcutaneously administered at 48 hours and 72 hours after acute IS) on improving the 90-day combined endpoint of recurrent stroke or death that has been previously reported. A secondary objective was to evaluate the long-term (that is, five years) outcome of patients who received EPO.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    Endocytic pathway is required for Drosophila Toll innate immune signaling

    No full text
    The Toll signaling pathway is required for the innate immune response against fungi and Gram-positive bacteria in Drosophila. Here we show that the endosomal proteins Myopic (Mop) and Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) are required for the activation of the Toll signaling pathway. This requirement is observed in cultured cells and in flies, and epistasis experiments show that the Mop protein functions upstream of the MyD88 adaptor and the Pelle kinase. Mop and Hrs, which are critical components of the ESCRT-0 endocytosis complex, colocalize with the Toll receptor in endosomes. We conclude that endocytosis is required for the activation of the Toll signaling pathway
    corecore