5,208 research outputs found

    NF-κB RelB Forms an Intertwined Homodimer

    Get PDF
    SummaryThe X-ray structure of the RelB dimerization domain (DD) reveals that the RelBDD assumes an unexpected intertwined fold topology atypical of other NF-κB dimers. All typical NF-κB dimers are formed by the association of two independently folded immunoglobulin (Ig) domains. In RelBDD, two polypeptides reconstruct both Ig domains in the dimer with an extra β sheet connecting the two domains. Residues most critical to NF-κB dimer formation are invariant in RelB, and Y300 plays a positive role in RelBDD dimer formation. The presence of RelB-specific nonpolar residues at the surface removes several intradomain surface hydrogen bonds that may render the domain fold unstable. Intertwining may stabilize the RelBDD homodimer by forming the extra β sheet. We show that, as in the crystal, RelB forms an intertwined homodimer in solution. We suggest that the transiently stable RelB homodimer might prevent its rapid degradation, allowing for heterodimer formation with p50 and p52

    Thermal-Mechanical Properties of Polyurethane-Clay Shape Memory Polymer Nanocomposites

    Get PDF
    Shape memory nanocomposites of polyurethane (PU)-clay were fabricated by melt mixing of PU and nano-clay. Based on nano-indentation and microhardness tests, the strength of the nanocomposites increased dramatically as a function of clay content, which is attributed to the enhanced nanoclay–polymer interactions. Thermal mechanical experiments demonstrated good mechanical and shape memory effects of the nanocomposites. Full shape memory recovery was displayed by both the pure PU and PU-clay nanocomposites.

    The development of non-coding RNA ontology

    Get PDF
    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data

    A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation.

    Get PDF
    Activation of the IκB kinase (IKK) is central to NF-κB signaling. However, the precise activation mechanism by which catalytic IKK subunits gain the ability to induce NF-κB transcriptional activity is not well understood. Here we report a 4 Å x-ray crystal structure of human IKK2 (hIKK2) in its catalytically active conformation. The hIKK2 domain architecture closely resembles that of Xenopus IKK2 (xIKK2). However, whereas inactivated xIKK2 displays a closed dimeric structure, hIKK2 dimers adopt open conformations that permit higher order oligomerization within the crystal. Reversible oligomerization of hIKK2 dimers is observed in solution. Mutagenesis confirms that two of the surfaces that mediate oligomerization within the crystal are also critical for the process of hIKK2 activation in cells. We propose that IKK2 dimers transiently associate with one another through these interaction surfaces to promote trans auto-phosphorylation as part of their mechanism of activation. This structure-based model supports recently published structural data that implicate strand exchange as part of a mechanism for IKK2 activation via trans auto-phosphorylation. Moreover, oligomerization through the interfaces identified in this study and subsequent trans auto-phosphorylation account for the rapid amplification of IKK2 phosphorylation observed even in the absence of any upstream kinase

    Plasmonic mode converter for controlling optical impedance and nanoscale light-matter interaction

    Full text link
    To enable multiple functions of plasmonic nanocircuits, it is of key importance to control the propagation properties and the modal distribution of the guided optical modes such that their impedance matches to that of nearby quantum systems and desired light-matter interaction can be achieved. Here, we present efficient mode converters for manipulating guided modes on a plasmonic two-wire transmission line. The mode conversion is achieved through varying the path length, wire cross section and the surrounding index of refraction. Instead of pure optical interference, strong near-field coupling of surface plasmons results in great momentum splitting and modal profile variation. We theoretically demonstrate control over nanoantenna radiation and discuss the possibility to enhance nanoscale light-matter interaction. The proposed converter may find applications in surface plasmon amplification, index sensing and enhanced nanoscale spectroscopy.Comment: 14 pages, 6 figure

    Poly[[diaqua­bis[μ-(2,4-dichloro­phen­oxy)acetato]calcium(II)] monohydrate]

    Get PDF
    In the title coordination polymer, {[Ca(C8H5Cl2O3)2(H2O)2]·H2O}n, the CaII atom is eight-coordinated by six O atoms from four different (2,4-dichloro­phen­oxy)acetate ligands and two water mol­ecules, and displays a distorted square-anti­prismatic coordination geometry. The compound forms an infinite zigzag chain through connection of the metal centers by (2,4-dichlorphen­oxy)acetate ligands and hydrogen bonding of coordinated and inter­stitial water mol­ecules. These chains are further hydrogen bonded with neighboring chains, forming a supra­molecular network

    Toward Solution of Matrix Equation X=Af(X)B+C

    Get PDF
    This paper studies the solvability, existence of unique solution, closed-form solution and numerical solution of matrix equation X=Af(X)B+CX=Af(X) B+C with f(X)=XT,f(X) =X^{\mathrm{T}}, f(X)=Xˉf(X) =\bar{X} and f(X)=XH,f(X) =X^{\mathrm{H}}, where XX is the unknown. It is proven that the solvability of these equations is equivalent to the solvability of some auxiliary standard Stein equations in the form of W=AWB+CW=\mathcal{A}W\mathcal{B}+\mathcal{C} where the dimensions of the coefficient matrices A,B\mathcal{A},\mathcal{B} and C\mathcal{C} are the same as those of the original equation. Closed-form solutions of equation X=Af(X)B+CX=Af(X) B+C can then be obtained by utilizing standard results on the standard Stein equation. On the other hand, some generalized Stein iterations and accelerated Stein iterations are proposed to obtain numerical solutions of equation equation X=Af(X)B+CX=Af(X) B+C. Necessary and sufficient conditions are established to guarantee the convergence of the iterations
    • …
    corecore