77 research outputs found

    Research on Energy Response Characteristics of Rock under Harmonic Vibro-Impacting Drilling

    Get PDF
    Open access via Springer Compact Agreement The support of National Natural Science Foundation of China (No. 51704074) and Youth Science Foundation of Heilongjiang Province (No. QC2018049) are gratefully acknowledged. The work is also supported by Talent Cultivation Foundation (No. SCXHB201703; No. ts26180119; No. td26180141) and Youth Science Foundation (No. 2019QNL-07) of Northeast Petroleum University.Peer reviewedPublisher PD

    Emerging Theranostic Nanomaterials in Diabetes and Its Complications

    Get PDF
    Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.Peer reviewe

    Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds

    Get PDF
    Nanocellulose has been demonstrated as a suitable material for cell culturing, given its similarity to extracellular matrices. Taking advantage of the shear thinning behavior, nanocellulose suits three-dimensional (3D) printing into scaffolds that support cell attachment and proliferation. Here, we propose aqueous suspensions of acetylated nanocellulose of a low degree of substitution for direct ink writing (DM). This benefits from the heterogeneous acetylation of precursor cellulosic fibers, which eases their deconstruction and confers the characteristics required for extrusion in DIW. Accordingly, the morphology of related 3D printed architectures and their performance during drying and rewetting as well as interactions with living cells are compared with those produced from typical unmodified and TEMPO-oxidized nanocelluloses. We find that a significantly lower concentration of acetylated nanofibrils is needed to obtain bioinks of similar performance, affording more porous structures. Together with their high surface charge and axial aspect, acetylated nanocellulose produces dimensionally stable monolithic scaffolds that support drying and rewetting, required for packaging and sterilization. Considering their potential uses in cardiac devices, we discuss the interactions of the scaffolds with cardiac myoblast cells. Attachment, proliferation, and viability for 21 days are demonstrated. Overall, the performance of acetylated nanocellulose bioinks opens the possibility for reliable and scaleup fabrication of scaffolds appropriate for studies on cellular processes and for tissue engineering.Peer reviewe

    Stress characteristics and stress reversal mechanism of white birch (Betula platyphylla) disks under different drying conditions

    Get PDF
    Drying stress is the main cause for the generation of drying cracks in wood disks during drying, which limits the processing and utilization of this valuable material. For this study, white birch disks with one trunk and a thickness of 30 mm were dried under three different drying conditions: 1) a very slow drying process preventing the generation of a radial moisture content (MC) gradient, 2) a drying process with slowly increasing temperature leading to a radial MC gradient, with a higher MC in the heartwood, and 3) the same heat drying process but the wood disks were partly covered with a thin plastic film prior to the drying process leading to a reversed radial MC gradient, i.e., a higher MC in the sapwood. For each drying condition, the tangential elastic strain in the wood disks was investigated for a mean MC of 26%, 18% and 10%, respectively, as a function of the radial distance from the pith in order to predict the drying stress. Furthermore, the stress characteristics and stress reversal mechanisms in wood disks are discussed in this paper with the help of stress analysis sketches

    Multifunctional 3D-printed patches for long-term drug release therapies after myocardial infarction

    Get PDF
    A biomaterial system incorporating nanocellulose, poly(glycerol sebacate), and polypyrrole is introduced for the treatment of myocardial infarction. Direct ink writing of the multicomponent aqueous suspensions allows multifunctional lattice structures that not only feature elasticity and electrical conductivity but enable cell growth. They are proposed as cardiac patches given their biocompatibility with H9c2 cardiomyoblasts, which attach extensively at the microstructural level, and induce their proliferation for 28 days. Two model drugs (3i‐1000 and curcumin) are investigated for their integration in the patches, either by loading in the precursor suspension used for extrusion or by direct impregnation of the as‐obtained, dry lattice. In studies of drug release conducted for five months, a slow in vitro degradation of the cardiac patches is observed, which prevents drug burst release and indicates their suitability for long‐term therapy. The combination of biocompatibility, biodegradability, mechanical strength, flexibility, and electrical conductivity fulfills the requirement of the highly dynamic and functional electroresponsive cardiac tissue. Overall, the proposed cardiac patches are viable alternatives for the regeneration of myocardium after infarction through the effective integration of cardiac cells with the biomaterial.Peer reviewe

    Clinical-radiomics nomogram using contrast-enhanced CT to predict histological grade and survival in pancreatic ductal adenocarcinoma

    Get PDF
    ObjectivesTumor grading is important for prognosis of pancreatic ductal adenocarcinoma (PDAC). In this study, we developed preoperative clinical-radiomics nomograms using features from contrast-enhanced CT (CECT), to discriminate high-grade and low-grade PDAC and predict overall survival (OS).MethodsIn this single-center, retrospective study conducted from February 2014 to April 2021, consecutive PDAC patients who underwent CECT and had pathologically identified grading were randomized to training (n=200) and test (n=84) cohorts for development of model to predict histological grade based on radiomics scores from CECT (HGrad). Another 42 patients were used as external validation cohort of HGrad. A nomogram (HGnom) was constructed using radiomics score, CA12-5 and smoking to predict histological grade. A second nomogram (Pnom) was constructed using radiomics score, CA12-5, TNM, adjuvant treatment, resection margin and microvascular invasion to predict OS in radical resection patients (217 of 284).ResultsAmong 326 patients, 122 were high-grade (120 poorly differentiated and 2 undifferentiated). The HGrad yielded AUCs of 0.75 (95% CI: 0.64, 0.85) and 0.76 (95% CI: 0.60, 0.91) in test and validation cohorts. The HGnom achieved AUCs of 0.77 (95% CI: 0.66, 0.87), and the predicted grades calibrated well with actual grades (P=.13). OS was different between the grades predicted by radiomics scores (P=.01). The integrated AUC of the Pnom for predicting OS was 0.80 (95% CI: 0.75, 0.88).ConclusionCompared with the HGrad using features from CECT, the HGnom demonstrated higher performance for predicting histological grade. The Pnom helped identify patients with high survival outcome in pancreatic ductal adenocarcinoma

    Improving the corrosion resistance of MgZn1.2GdxZr0.18 (x =0, 0.8, 1.4, 2.0) alloys via Gd additions

    Get PDF
    Funding Information: This research was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301101 ), the National Natural Science Foundation of China (Grant No. 51971054 ) and the Fundamental Research Funds for the Central Universities (Grant Nos. N180904006 and N2009006 ). Publisher Copyright: © 2020 Elsevier LtdEffects of Gd addition on microstructure, corrosion behavior and mechanism of cast and extruded MgZn1.2GdxZr0.18 alloys are investigated through microstructure observation, weight loss and electrochemical tests. Increasing Gd from 0 to 2.0 at.%, grains are refined, MgZn2 phase, W-phase and X-phase are formed successively, and basal texture intensity is decreased. The significantly decreased grain size by extrusion and Gd addition induces formation of protective Gd2O3 and MgO layer. The extruded MgZn1.2Gd2.0Zr0.18 alloy shows decreased corrosion rate of 3.72 ± 0.36 mm/year, owing to fine and homogeneous microstructure, dual-role (micro-anode and barrier) of X-phase, compact oxidation layer and basal crystallographic texture.Peer reviewe
    corecore