1,199 research outputs found
Annual modulation of the Galactic binary confusion noise bakground and LISA data analysis
We study the anisotropies of the Galactic confusion noise background and its
effects on LISA data analysis. LISA has two data streams of the gravitational
waves signals relevant for low frequency regime. Due to the anisotropies of the
background, the matrix for their confusion noises has off-diagonal components
and depends strongly on the orientation of the detector plane. We find that the
sky-averaged confusion noise level could change by a factor of 2
in three months, and would be minimum when the orbital position of LISA is
either around the spring or autumn equinox.Comment: 13 pages, 6 figure
A small universe after all?
The cosmic microwave background radiation allows us to measure both the
geometry and topology of the universe. It has been argued that the COBE-DMR
data already rule out models that are multiply connected on scales smaller than
the particle horizon. Here we show the opposite is true: compact (small)
hyperbolic universes are favoured over their infinite counterparts. For a
density parameter of Omega_o=0.3, the compact models are a better fit to
COBE-DMR (relative likelihood ~20) and the large-scale structure data (sigma_8
increases by ~25%).Comment: 4 pages, RevTeX, 7 Figure
Topological Andr\'e-Quillen homology for cellular commutative -algebras
Topological Andr\'e-Quillen homology for commutative -algebras was
introduced by Basterra following work of Kriz, and has been intensively studied
by several authors. In this paper we discuss it as a homology theory on CW
-algebras and apply it to obtain results on minimal atomic -local
-algebras which generalise those of Baker and May for -local spectra and
simply connected spaces. We exhibit some new examples of minimal atomic
-algebras.Comment: Final revision, a version will appear in Abhandlungen aus dem
Mathematischen Seminar der Universitaet Hambur
Fine-Tuning Solution for Hybrid Inflation in Dissipative Chaotic Dynamics
We study the presence of chaotic behavior in phase space in the
pre-inflationary stage of hybrid inflation models. This is closely related to
the problem of initial conditions associated to these inflationary type of
models. We then show how an expected dissipative dynamics of fields just before
the onset of inflation can solve or ease considerably the problem of initial
conditions, driving naturally the system towards inflation. The chaotic
behavior of the corresponding dynamical system is studied by the computation of
the fractal dimension of the boundary, in phase space, separating inflationary
from non-inflationary trajectories. The fractal dimension for this boundary is
determined as a function of the dissipation coefficients appearing in the
effective equations of motion for the fields.Comment: 10 pages, 4 eps figures (uses epsf), Revtex. Replaced with version to
match one in press Physical Review
Simulating Cosmic Microwave Background maps in multi-connected spaces
This article describes the computation of cosmic microwave background
anisotropies in a universe with multi-connected spatial sections and focuses on
the implementation of the topology in standard CMB computer codes. The key
ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multi-connected space topology. The correlators of
the coefficients of the decomposition of the temperature fluctuation in
spherical harmonics are computed and examples are given for spatially flat
spaces and one family of spherical spaces, namely the lens spaces. Under the
hypothesis of Gaussian initial conditions, these correlators encode all the
topological information of the CMB and suffice to simulate CMB maps.Comment: 33 pages, 55 figures, submitted to PRD. Higher resolution figures
available on deman
Sodium atoms and clusters on graphite: a density functional study
Sodium atoms and clusters (N<5) on graphite (0001) are studied using density
functional theory, pseudopotentials and periodic boundary conditions. A single
Na atom is observed to bind at a hollow site 2.45 A above the surface with an
adsorption energy of 0.51 eV. The small diffusion barrier of 0.06 eV indicates
a flat potential energy surface. Increased Na coverage results in a weak
adsorbate-substrate interaction, which is evident in the larger separation from
the surface in the cases of Na_3, Na_4, Na_5, and the (2x2) Na overlayer. The
binding is weak for Na_2, which has a full valence electron shell. The presence
of substrate modifies the structures of Na_3, Na_4, and Na_5 significantly, and
both Na_4 and Na_5 are distorted from planarity. The calculated formation
energies suggest that clustering of atoms is energetically favorable, and that
the open shell clusters (e.g. Na_3 and Na_5) can be more abundant on graphite
than in the gas phase. Analysis of the lateral charge density distributions of
Na and Na_3 shows a charge transfer of about 0.5 electrons in both cases.Comment: 20 pages, 6 figure
Relativistic treatment of harmonics from impurity systems in quantum wires
Within a one particle approximation of the Dirac equation we investigate a
defect system in a quantum wire. We demonstrate that by minimally coupling a
laser field of frequency omega to such an impurity system, one may generate
harmonics of multiples of the driving frequency. In a multiple defect system
one may employ the distance between the defects in order to tune the cut-off
frequency.Comment: 9 pages Latex, 8 eps figures, section added, numerics improve
Energy Relaxation in Nonlinear One-Dimensional Lattices
We study energy relaxation in thermalized one-dimensional nonlinear arrays of
the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in
contact with a zero-temperature reservoir via damping forces. Harmonic arrays
relax by sequential phonon decay into the cold reservoir, the lower frequency
modes relaxing first. The relaxation pathway for purely anharmonic arrays
involves the degradation of higher-energy nonlinear modes into lower energy
ones. The lowest energy modes are absorbed by the cold reservoir, but a small
amount of energy is persistently left behind in the array in the form of almost
stationary low-frequency localized modes. Arrays with interactions that contain
both a harmonic and an anharmonic contribution exhibit behavior that involves
the interplay of phonon modes and breather modes. At long times relaxation is
extremely slow due to the spontaneous appearance and persistence of energetic
high-frequency stationary breathers. Breather behavior is further ascertained
by explicitly injecting a localized excitation into the thermalized array and
observing the relaxation behavior
Detection of relic gravitational waves in the CMB: Prospects for CMBPol mission
Detection of relic gravitational waves, through their imprint in the cosmic
microwave background radiation, is one of the most important tasks for the
planned CMBPol mission. In the simplest viable theoretical models the
gravitational wave background is characterized by two parameters, the
tensor-to-scalar ratio and the tensor spectral index . In this paper,
we analyze the potential joint constraints on these two parameters, and
, using the potential observations of the CMBPol mission, which is
expected to detect the relic gravitational waves if . The
influence of the contaminations, including cosmic weak lensing, various
foreground emissions, and systematical errors, is discussed.Comment: 26 pages, 19 figures, 4 tables; JCAP in pres
- …