2,889 research outputs found

    Multiregional Satellite Precipitation Products Evaluation over Complex Terrain

    Get PDF
    An extensive evaluation of nine global-scale high-resolution satellite-based rainfall (SBR) products is performed using a minimum of 6 years (within the period of 2000-13) of reference rainfall data derived from rain gauge networks in nine mountainous regions across the globe. The SBR products are compared to a recently released global reanalysis dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study areas include the eastern Italian Alps, the Swiss Alps, the western Black Sea of Turkey, the French Cévennes, the Peruvian Andes, the Colombian Andes, the Himalayas over Nepal, the Blue Nile in East Africa, Taiwan, and the U.S. Rocky Mountains. Evaluation is performed at annual, monthly, and daily time scales and 0.25° spatial resolution. The SBR datasets are based on the following retrieval algorithms: Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA), the NOAA/Climate Prediction Center morphing technique (CMORPH), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Global Satellite Mapping of Precipitation (GSMaP). SBR products are categorized into those that include gauge adjustment versus unadjusted. Results show that performance of SBR is highly dependent on the rainfall variability. Many SBR products usually underestimate wet season and overestimate dry season precipitation. The performance of gauge adjustment to the SBR products varies by region and depends greatly on the representativeness of the rain gauge network

    Tracing magnetism and pairing in FeTe-based systems

    Full text link
    In order to examine the interplay between magnetism and superconductivity, we monitor the non- superconducting chalcogenide FeTe and follow its transitions under insertion of oxygen, doping with Se and vacancies of Fe using spin-polarized band structure methods (LSDA with GGA) starting from the collinear and bicollinear magnetic arrangements. We use a supercell of Fe8Te8 as our starting point so that it can capture local changes in magnetic moments. The calculated values of magnetic moments agree well with available experimental data while oxygen insertions lead to significant changes in the bicollinear or collinear magnetic moments. The total energies of these systems indicate that the collinear-derived structure is the more favorable one prior to a possible superconducting transition. Using a 8-site Betts-cluster-based lattice and the Hubbard model, we show why this structure favors electron or hole pairing and provides clues to a common understanding of charge and spin pairing in the cuprates, pnictides and chalcogenides

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    Studies of the Decay B+- -> D_CP K+-

    Get PDF
    We report studies of the decay B+- -> D_CP K+-, where D_CP denotes neutral D mesons that decay to CP eigenstates. The analysis is based on a 29.1/fb data sample of collected at the \Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e+ e- storage ring. Ratios of branching fractions of Cabibbo-suppressed to Cabibbo-favored processes involving D_CP are determined to be B(B- -> D_1 K-)/B(B- -> D_1 pi-)=0.125 +- 0.036 +- 0.010 and B(B- -> D_2 K-)/B(B- -> D_2 pi-)=0.119 +- 0.028 +- 0.006, where indices 1 and 2 represent the CP=+1 and CP=-1 eigenstates of the D0 - anti D0 system, respectively. We also extract the partial rate asymmetries for B+- -> D_CP K+-, finding A_1 = 0.29 +- 0.26 +- 0.05 and A_2 = -0.22 +- 0.24 +- 0.04.Comment: 10 pages, 2 figures, submitted to Physical Review Letter

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    An Analysis of How Interactive Technology Supports the Appreciation of Traditional Chinese Puppetry: A Review of Case Studies

    Get PDF
    From the perspective of safeguarding Chinese Cultural Heritage, this paper discusses how to enhance the appreciation of traditional Chinese puppetry through the support of interactive technology. The author analyses extensive, yet current case studies, based on the findings described in the interactive systems for puppetry performances and interactive technology for puppetry appreciation. The author summarises four aspects of how to enhance the appreciation of, and engagement with, traditional Chinese puppetry: (1) maintaining originality is necessary for the design phase; (2) it is crucial to explore how to use interactive technology in order to design a way for adults to appreciate this form of art; (3) it is also necessary to determine ways to support adult audiences in grasping the cultural significance and folk customs of traditional Chinese puppetry; and (4) the study’s further main research goals are to investigate ways to use emotional expressions, digital storytelling and other methods in conjunction with interactive technology to help multi-cultural users comprehend traditional Chinese puppetry

    Combined SVM-CRFs for Biological Named Entity Recognition with Maximal Bidirectional Squeezing

    Get PDF
    Biological named entity recognition, the identification of biological terms in text, is essential for biomedical information extraction. Machine learning-based approaches have been widely applied in this area. However, the recognition performance of current approaches could still be improved. Our novel approach is to combine support vector machines (SVMs) and conditional random fields (CRFs), which can complement and facilitate each other. During the hybrid process, we use SVM to separate biological terms from non-biological terms, before we use CRFs to determine the types of biological terms, which makes full use of the power of SVM as a binary-class classifier and the data-labeling capacity of CRFs. We then merge the results of SVM and CRFs. To remove any inconsistencies that might result from the merging, we develop a useful algorithm and apply two rules. To ensure biological terms with a maximum length are identified, we propose a maximal bidirectional squeezing approach that finds the longest term. We also add a positive gain to rare events to reinforce their probability and avoid bias. Our approach will also gradually extend the context so more contextual information can be included. We examined the performance of four approaches with GENIA corpus and JNLPBA04 data. The combination of SVM and CRFs improved performance. The macro-precision, macro-recall, and macro-F1 of the SVM-CRFs hybrid approach surpassed conventional SVM and CRFs. After applying the new algorithms, the macro-F1 reached 91.67% with the GENIA corpus and 84.04% with the JNLPBA04 data

    CT characteristics of non-small cell lung cancer with epidermal growth factor receptor mutation: a systematic review and meta-analysis

    Full text link
    BACKGROUND: To systematically investigate the relationship between CT morphological features and the presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). METHODS: All studies about the CT morphological features of NSCLC with EGFR mutations published between January 1, 2000 and March 15, 2015 were searched in the PubMed and EMBASE databases. Qualified studies were selected according to inclusion criteria. The frequency of EGFR mutations and CT features of ground-glass opacity (GGO) content, tumor size, cavitation, air-bronchogram, lobulation, and spiculation were extracted. The relationship between EGFR mutations and each of these CT features was tested based upon the weighted mean difference or inverse variance in the form of an odds ratio at a 95% confidence interval using Forest Plots. The publication bias was examined using Egger’s test. RESULTS: A total of 13 studies, consisting of 2146 NSCLC patients, were included, and 51.12% (1097/2146) of patients had EGFR mutations. The EGFR mutations were present in NSCLC with part-solid GGO in contrast to nonsolid GGO (OR = 0.49, 95% CI = 0.25–0.96, P = 0.04). Other CT features such as tumor size, cavitation, air-bronchogram, lobulation and spiculation did not demonstrate statistically significant correlation with EGFR mutations individually (P = 0.91; 0.67; 0.12; 0.45; and 0.36, respectively). No publication bias among the selected studies was noted in this meta-analysis (Egger’s tests, P > 0.05 for all). CONCLUSION: This meta-analysis demonstrated that NSCLC with CT morphological features of part-solid GGO tended to be EGFR mutated, which might provide an important clue for the correct selection of patients treated with molecular targeted therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12880-016-0175-3) contains supplementary material, which is available to authorized users
    • …
    corecore