35,214 research outputs found

    Anomaly induced QCD potential and Quark Decoupling

    Full text link
    We explore the anomaly induced effective QCD meson potential in the framework of the effective Lagrangian approach. We suggest a decoupling procedure, when a flavored quark becomes massive, which mimics the one employed by Seiberg for supersymmetric gauge theories. It is seen that, after decoupling, the QCD potential naturally converts to the one with one less flavor. We study the NcN_c and NfN_f dependence of the η′\eta^{\prime} mass.Comment: 11 pages, RevTe

    Light weight fire resistant graphite composites

    Get PDF
    Composite structures with a honeycomb core and characterized by lightweight and excellent fire resistance are provided. These sandwich structures employ facesheets made up of bismaleimide-vinyl styrylpyridine copolymers with fiber reinforcement such as carbon fiber reinforcement. In preferred embodiments the facesheets are over layered with a decorative film. The properties of these composites make them attractive materials of construction aircraft and spacecraft

    Information, information processing and gravity

    Full text link
    I discuss fundamental limits placed on information and information processing by gravity. Such limits arise because both information and its processing require energy, while gravitational collapse (formation of a horizon or black hole) restricts the amount of energy allowed in a finite region. Specifically, I use a criterion for gravitational collapse called the hoop conjecture. Once the hoop conjecture is assumed a number of results can be obtained directly: the existence of a fundamental uncertainty in spatial distance of order the Planck length, bounds on information (entropy) in a finite region, and a bound on the rate of information processing in a finite region. In the final section I discuss some cosmological issues related to the total amount of information in the universe, and note that almost all detailed aspects of the late universe are determined by the randomness of quantum outcomes. This paper is based on a talk presented at a 2007 Bellairs Research Institute (McGill University) workshop on black holes and quantum information.Comment: 7 pages, 5 figures, revte

    Coal desulfurization by low temperature chlorinolysis, phase 1

    Get PDF
    The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment

    Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

    Get PDF
    In general, there are no long-term meteorological or hydrological data available for karst river basins. The lack of rainfall data is a great challenge that hinders the development of hydrological models. Quantitative precipitation estimates (QPEs) based on weather satellites offer a potential method by which rainfall data in karst areas could be obtained. Furthermore, coupling QPEs with a distributed hydrological model has the potential to improve the precision of flood predictions in large karst watersheds. Estimating precipitation from remotely sensed information using an artificial neural network-cloud classification system (PERSIANN-CCS) is a type of QPE technology based on satellites that has achieved broad research results worldwide. However, only a few studies on PERSIANN-CCS QPEs have occurred in large karst basins, and the accuracy is generally poor in terms of practical applications. This paper studied the feasibility of coupling a fully physically based distributed hydrological model, i.e., the Liuxihe model, with PERSIANN-CCS QPEs for predicting floods in a large river basin, i.e., the Liujiang karst river basin, which has a watershed area of 58 270 km-2, in southern China. The model structure and function require further refinement to suit the karst basins. For instance, the sub-basins in this paper are divided into many karst hydrology response units (KHRUs) to ensure that the model structure is adequately refined for karst areas. In addition, the convergence of the underground runoff calculation method within the original Liuxihe model is changed to suit the karst water-bearing media, and the Muskingum routing method is used in the model to calculate the underground runoff in this study. Additionally, the epikarst zone, as a distinctive structure of the KHRU, is carefully considered in the model. The result of the QPEs shows that compared with the observed precipitation measured by a rain gauge, the distribution of precipitation predicted by the PERSIANN-CCS QPEs was very similar. However, the quantity of precipitation predicted by the PERSIANN-CCS QPEs was smaller. A post-processing method is proposed to revise the products of the PERSIANN-CCS QPEs. The karst flood simulation results show that coupling the post-processed PERSIANN-CCS QPEs with the Liuxihe model has a better performance relative to the result based on the initial PERSIANN-CCS QPEs. Moreover, the performance of the coupled model largely improves with parameter re-optimization via the post-processed PERSIANN-CCS QPEs. The average values of the six evaluation indices change as follows: the Nash-Sutcliffe coefficient increases by 14 %, the correlation coefficient increases by 15 %, the process relative error decreases by 8 %, the peak flow relative error decreases by 18 %, the water balance coefficient increases by 8 %, and the peak flow time error displays a 5 h decrease. Among these parameters, the peak flow relative error shows the greatest improvement; thus, these parameters are of page1506 the greatest concern for flood prediction. The rational flood simulation results from the coupled model provide a great practical application prospect for flood prediction in large karst river basins

    Anomaly Matching in Gauge Theories at Finite Matter Density

    Full text link
    We investigate the application of 't Hooft's anomaly matching conditions to gauge theories at finite matter density. We show that the matching conditions constrain the low-energy quasiparticle spectrum associated with possible realizations of global symmetries.Comment: 11 pages, 1 figure, LaTeX. Section C is corrected and added reference

    Trellis phase codes for power-bandwith efficient satellite communications

    Get PDF
    Support work on improved power and spectrum utilization on digital satellite channels was performed. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses: analytical bounds on error probability for multi-h phase codes, power and bandwidth characterization of 4-ary multi-h codes, and initial results of channel simulation to assess the impact of band limiting filters and nonlinear amplifiers on CPM performance

    Fisher Renormalization for Logarithmic Corrections

    Get PDF
    For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at their upper critical dimensions, where predictions for logarithmic corrections are made.Comment: 10 pages, no figures. Version 2 has added reference

    Baryon resonances and hadronic interactions in a finite volume

    Get PDF
    In a finite volume, resonances and multi-hadron states are identified by discrete energy levels. When comparing the results of lattice QCD calculations to scattering experiments, it is important to have a way of associating the energy spectrum of the finite-volume lattice with the asymptotic behaviour of the S-matrix. A new technique for comparing energy eigenvalues with scattering phase shifts is introduced, which involves the construction of an exactly solvable matrix Hamiltonian model. The model framework is applied to the case of Δ→Nπ\Delta\rightarrow N\pi decay, but is easily generalized to include multi-channel scattering. Extracting resonance parameters involves matching the energy spectrum of the model to that of a lattice QCD calculation. The resulting fit parameters are then used to generate phase shifts. Using a sample set of pseudodata, it is found that the extraction of the resonance position is stable with respect to volume for a variety of regularization schemes, and compares favorably with the well-known Luescher method. The model-dependence of the result is briefly investigated.Comment: 7 pages, 3 figures. Talk presented at the 30th International Symposium on Lattice Field Theory (Lattice 2012), June 24-29, 2012, Cairns, Australi
    • …
    corecore