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1.0 INTRODUCTION

In this final report on "Trellis Phase Codes for Power/Bandwidth

Efficient Satellite Communication," (NAS5-25634) we summarize work

performed since the last report of July 1980. Since that time we have

continued our study of multi-h and partial response FM digital modula-

tions, and have emphasized three special aspects:

1. analytical error bounds for mt:lti-h phase codes

2. a study of 4-ary multi-h codes

3. channel simulation cur partial-response and multi-h codes to

assess the effects of bandlimiting and nonlinear amplification.

These are discussed in detail in following chapters of the report.

Additional work performed under the contract has been described

in two pervious semi-annual reports to NASA/Lewis Research Center,

published in November 1979 and July 1980.
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2.0 ERROR BOUNDS FOR MULTI-H PHASE CODES

This section is a revision of a manuscript accepted for publication

in the IEEE Transaction on Information Theory. Numbering of equa-

tions and references is internally consistent.

1. INTRODUCTION

Multi-h phase codes, described in detail by Anderson and Taylor

[1], and earlier conceived by Miyakawa, et al. [2], represent a class of

constant envelope signal designs providing attractive gains in th A

power/bandwidth tradeoff, relative to MSK or QPSK. Time-variation of

the transmitter frequency deviation parameter among a small set of

rational numbers provides delayed remergers in the phase trellis. This

in turn provides increased minimum distance between signals which may

be exploited by a maximum likelihood sequence estimator to enhance

detection efficiency. Analysis thus far of these signals has concentra-

ted on minimum distance to yield asymptotic behavior, and some simula-

tion results are available, [3 , 4 ] .

These signals may be represented in terms of a finite-state trellis,

though a time-varying one due to the cyclical nature of the modulator

deviation parameter. In order to determine bounds on error probabili-

ty, we extend the union bound/transfer fumction approach earlier used

for linear convolutional codes [5] to the multi-h phase code case. In

closely-related work, Aulin [6] has developed similar bounds for the

class of partial-response FM codes with fixed modulator deviation. As

with earlier applications, the principal difficulty is in formulating the

f
	 state diagram and the necessary branch gains. Once this is accom-
t;
is	 plished, numerical evaluation is straightforward.

2
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Lower bounds on receiver performance are more easily obtained in

terms of a single (or few) neighboring paths, and it will be seen that

the two bounds are close for performance levels of typical interest.

The paper is organized as follows. Section II provides a brief

review of the multi-li signal structure, and its state-space description.

Section III develops the upper and lower bounds for the case of unlimi-

ted path memory, incorporating the concept of difference-state trellises

and the associated transfer functions. The effects of finite decoder

path memory are addressed in Section IV. The paper concludes with

several illustrative examples comparing the analytical bounds with simu-

lation data.

II. BACKGROUND

We assume the transmitted signal is of the constant- envelope form

s(t) = (2P) k cos (LUCt + ©0 + $( t , a ))	 (Z)

where P is the power of the symbol, ©o is an arbitrary phase angle,

and ^(t,a) is the (causal) phase modulation induced by a semi-infinite

sequence

a = ( a l , a 2 , .. an ,...)

4 

The symbols an are selected independently each T seconds with equi-

probability from the set {-(M-1), ..... -3, -1, 1, 3, .... (M-1)) so

that the signalling is M-ary.

Over the nth signalling interval, (n-1) T < t < nT, the phase term

in multi-h coding is a continuous waveform given by

3
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n-1
n E a. h. + n ft 	 a h g(t - (n-1)T)dt	 (2)

j =1 J J	 (n-1)T n n

The first term in (2) gives the accumulated phase due to symbols

through an_ 1 , while the second term provides the time-varying phase 	 {

increment over the nth interval. Also in (2) we have defined g(t) to

be a frequency pulse for spectrum-shaping purposes. We assume that 	 j

g(t) is non-zero for 0 < t < T, and that

f
o
Tg(t)dt = 1	 (3) +

Under this normalization hn plays the role of a modulation index,

and hn/T is proportional to the average frequency deviation over the 	 j

symbol interval. We remark this description is more general than that

of [1] , in that M-ary modulation, as well as nonlinear phase trajecto-

ries, are allowed.

In standard digital FM transmission, h  is some constant h. For

MSK designs, h = 1/2, and for binary CPFSK, h = 0.715 maximizes the 	 j

detection efficiency. However, in multi-h coding, h  is cyclically 	 1

chosen from a set H  of K rational numbers:

HK =  {
P1 P2	 P1(
 -1 —1 ... — ] A {h (1) , h (2) , .... h(K) }	 (4)
 q q	 q r

That is

hl = h (1) , h2 = h (2) , hK = h(K)

and thereafter	 i

hn+ J K = h 

The set of possible phase trajectories associated with data sequen-

x

4
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ces of length n is a R11ase tree of Mn trajectories. By virtue of the

rational-index assumption,	 it will be seen that the number of distinct

phases, modulo - 2n, attained at the end of symbol intervals is exactly

q. (A complication is that there may be a different q values for differ-

ent times,	 but this does not influence our development). Thus, the

tree collapses to a phase trellis, describing the allowable phase transi-

tions, and the allowable signal trajectories.

By defining the signal state at time n as

n-1
F	 Sn = n 2 h^ a^, 	mod 	2n	 (5)

t	 J=

1

L

we obtain a finite-state description of the signal, whereby the state

evolves among q states (phases) according to

S11+1 = 3
n + n hn an , mod 2n	 (6)

This description is essential for maximum likelihood decoding via the

Viterbi algorithm.
6

As a unifying example throughout, we shall consider a simple

binary code defined by H2 = {2/4, 3/4) . The states trellis for this

example is shown in Figure :1, where it may be seen that the allowable

state transitions are time-varying, depending on which deviation is

currently in effect. The trellis shows state transitions, and is not
i

meant to indicate actual phase variation, although in the usual case the
w

phrase segments are piece-wise linear. The trellis is structurally very

regular, its appoarance complicated only by the niod 2n phase defini-

tion.

For this example, it may be seen that two data sequences which

differ in the first position produce state sequences which are unmerged

->'1

5
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3,r/2

Tr

7r/2

j

0

h=2/4
	

h=3/4	 h=2/4	 h=3/4

transition for an= 1

--.. -.— — transition for a =-1
n

Figure 1. State Trellis for {2/4,3/4} Code
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for at least K + 1 = 3 bits in the trellis. Generally speaking long

remerger lengths are desirable for energy efficiency, and it may be

shown that there exist sets HK which achieve an unmerged span of K+1

levels provided q > MK , [1), (4].
Assuming coherent reception of the multi-h signal in white

Gaussian. noise, the optimal sequence detector is comprised of a bank of

correlators coupled with a q-state Viterbi algorithm decoder. The

correlators in effect generate branch metrics for the trellis search.

The receiver locates the data sequence producing the largest waveform

correlation, ignoring for the moment questions of quantization and path

memory. An alternate view is that the receiver does minimum distance

decoding, with distance measured in the L 2 norm. Distance between

waveforms is key concept in the development, and is given by

d 122 =	
2E	

^NoT (s
l (t) - s 2 ( t )) 2d t	(7)

N

The :iormali2ation is selected so that the probability of error in a two-

signal test is

'12 E \ 1/2
P = Q ^ N2
	

J	
(8)e 

0

where E = PT is the energy per symbol, and N o is the one-sided noise

spectral density. Wish this definition, antipodal signals of length T

have a normali2ed distance of 2.

Quantities of special importance are the minimum distance over an

interval of length N, defined as

d. 2 
= min min d

ij
2	 (9)m

N	 i	 J	 N

7
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and its limiting value in N, dfree ' These will determine the detection

efficiency at large E/No,

III. DEVELOPMENT OF ERROR BOUNDS, UNLIMITED PATH MEMORY

In this section we proceed to develop upper and lower bounds on

the probability that a decoding error Event begins at some level n,

denoted Pe , and on the probability of symbol error, denoted Ps .	 The

receiver memory is assumed arbitrarily large. The- development utilizes

standard transfer function bounding, e.g., [5] , modified to incorporate

difference state concepts [6] and the time-varying nature of the trellis.

An error event uegins at time n if the decoder selects sequence b

rather than the transmitted sequence a , where a and b first differ

at time n. The probability that two sequences are confused depends

only on their phase difference trajectory (as well as E/N o) . Since

phase is in turn proportional to the data sequence, we need only consi-

der possible data difference sequences, rather than consider all possible

sequence pairs (a b ) . This fact has been utilized by Aulin [6] for

the case of partial-response FM trellis codes.

For multi-h codes, the difference-state for a pair of sequences is

given by the accumulated phase difference, mod 2n. That is

n-1
On = I n h ŷ ^ 	 , mod-2n	 (10)

j=1

where yj = a  - bj . The difference-state trellis shows the possible

evolution of difference-state among the q possible valucss for (10) .

Since yj is in a set of size 2M-1, there are 2M-1 branches entering and

leaving each node of 'the difference-state trellis. Figure 2 illustrates

the difference-state trellis for the [2/4, 3/4) binary code described

earlier.

8
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y  = 0
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-- — -- =-2

Figure 2. Difference-State Trellis for {2/4,3/4} Cie
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Error free decoding correPponds to residence in the 
'gin 

= 0 state,

i.e. the sele,ted path agrees with the transmitted path. An error	 !

event begins at time n if the selected path splits from the zero differ-

ence-state at the n th level. The probability of this event, P e , is

upper bounded by the sum of probabilities that the decoder selects a

specific difference sequence which leaves the zero difference-state at

time n and remerges later in the trellis. ,
Actually this bound is unduly pessimistic since transmitted sequen-

ces are not in one-to-one corresp^.ndence with difference sequences.

For example consider M = 2. The allowed values for yn are 2, 0, -2.

yn = 2 can be' formed only by (an , bn) _ (1,-1), whereas yn=0 can

correspond to (an , bn ) = (1,1) or (-1, -1) . To properly average with

respect to transmitted sequences, we must give lesser weight to the

influence of yn = ± 2 transitions. Similar effects happen with larger M,

and Aulin [6] has shown a multiplying factor

c = n [M -I yn l/2] /M	 (1Y)
n

must be applied to the probability of each difference sequence to pro-

vide the proper averaging.

Assuming for the present that deviation h (1) is effect at time n,

7

1

L

we can now write the conditional event error probability as

d. 2 E 1/2
Pe ^l	

F ci Q(( 1 N	 )	 )	 X12)
i=1	 0

where i is an index on the set of unmerged difference sequences, id 1 2 is

the distance corresponding to the ith sequence conditioned by the fact

that h  = h (1) , and c i is a weighting factor obtained via (11).

10



ORIGINA,L PALL' FZ
OF POOR QUALITY

Signal flow graphs and their transfer functions may be used to

evaluate (12) numerically. The difference-state transition diagram is

viewed as a flow graph with zero state split into input and output

nodes. Paths are labelled with a gain of the form cD XIYL where c is

given by [M - j y j /2 1/M, x is the distance accumulated in undergoing a

given transition, and y is an error indicator (y = '1 if y ^ 0 and y = 0

if y=0).

In the multi-h case, the state transition diagram is time-varying.

Whereas a single transition matrix suffices in the 'usual case, K state

transition diagrams (and matrices) are needed here. Returning to our

example, we show the two split difference-state diagrams for the {2/4,

3/4) code in Figure 3. In tracing paths, one must alternate between

diagrams.

To handle the time-varying case, we imagine an ensemble of trans-

mitter/receiver pairs for which the deviation index at time n = 1 is

randomly selected among K values equiprobably. Thereafter each

system runs according to the usual multi-h format. One then sees that

the error probability at any time n is an average of error probabilities

conditioned on a specific choice of deviations,

K
P^ = K
	

I Pe I	 (13)

l=

and the same holds for symbol probabilities. More practically, one may

view this in terms of a time average for a single realization.

Next, we upper bound the error probability P.1 1 , noting the other

Pe 4
1
 follow directly. We define, T, to be the matrix of path gains

between difference states when deviation h (1' ) is in effect, T2 to be the

11

3,

I
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!Do .361L;+2

k
1DIL;-2	 C

D'

2D1.641L;+2

DL;0

a) h--2/4

DL; 0

q7r/

<

L;-2

1

 
1D0.79IL;+2

^r	 D2L;0

IL;-2	 2D0.79IL;+2

 //^

.21 IL;  +2

b

.21IL;-2

DL; 0
b) h=3/4

Figure 3. Split Difference-State Transition Diagram,
Binary {2/4,3/4} Linear Phase Code
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0	 DL	 0	 22L(DO.36+D1.64) 0

0	 0	 D2L	 0	 DIL
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2	

)	 0	 DL	 0

0	 0	 0	 0	 0

0	 2D1.21IL	 0	 2D1.21IL	 0

0	 DL	 1D.79IL	 0	 ID1.21IL

T2	 0	 7_2.D0.^92L	 D2L	 !D0.79ZL	 0
0	 0	 1D0.79IL	 DL	 iD1.212L

0	 0	 0	 0	 0

Fide 3 (continued)
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matrix corresponding to h (2) , and so on. Each matrix will be square

with dimension q + 1, arising from q difference states plus one for

splitting of the zero-difference state. We index the difference states 1,

2, ... , q, and let 1 and q + 1 be the indices for the split zero state.

The jk `11 element of T1 represents the path gain from state j to state k,

and will be a polynomial in D, I and L. Figure 3 itemizes these matri-

ces for the example code.

In finding the transfer function of the graph, we note that Ti

represents the possible actions after a single step, T 1T2 represents the

actions after two steps, etc. After any prescribed number of steps,

the upper right-hand corner elemeht of the sum matrix

M 1 A T 1 + T IT  + T IT 2T3 + ....	 (14)

provides the path enumeration we seek, namely the set of possible path

distances, their lengths, and respective number of symbol errors.

In the case of unlimited memory, we have an infinite sum of matrix

products in (14) . Noting the periodic nature of the hn , (14) may be

regrouped as

00

M 1 = [ I (T i T 2 ... TO I [T 1 + T iT 2 + ... TIT  .. TKI
j=0

[I - T iT 2 ... TKI_i [T 1 + T 1T2 + ... T 1T 2 ... TK I	 (15)

We call the upper-right corner element of M 1 the transfer function of

the graph, when h (1) is the initial deviation, and denote it G1(D,I,L).

It may be written in general as

G1(D,I,L) 	
Co

 

i=1
c. D d i 2 1ViLQi

x (16)

14
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2
where ci is a positive constant, di is a distance associated with an

error event of length Z i , vi is the corresponding number of symbol

errors. There may be many error events of a given length having
2

differing d i and vi.

Recalling the upper bound to event error probability of (12) we

see that if the series expansion (16) could be obtained, the bound is

obtained. Such is not possible except for simple examples, so we seek

an efficient numerical procedure.

By the inequality [5]

	

Q ((a+b) 1/2 ) < Q(a l/2 )e-b/2	 a, b > 0	 (17)

we may write (12) as

2	 d2 j.l dmin E	 1/2	 ldmin E	 di E
Pe l l < Q((	 N	 )	 ) exp [	 2N	 j	 ciexp(- 2N )	 (18)

0	 0	 i= 1 	0

But the summation in (18) is precisely G 1 (D,I,L) with D = e -L/2N0, I =

1, L = 1. Thus, conditioned on h (1) being nth deviation, we have

d2 E	 d2 E

	

Pe l l < Q ((1 mNn ) 1/2 ) exp ( 1 2N0	 ,I

	

) G1 (D,L)	 D = e-E/2'0
0	 o	

I I- L= 1
(19)

2

< G1(D,I,L) D = e-E/2N0	 (2n l dmin E)1/2

II = L = 1	 0

The latter follows by the inequality

Q( x) < e_ 'C 2/2/(2n)1/2x	
(20)

which weakens the bound slightly for small signal-to-noise ratio.

k
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Furthermore, the conditional upper bound on symbol error probability is

1/2
d. 2 E )

PS I,< I C  vi Q 
1 

^N	
(21)

where	 ks the number of symbol errors associated with the i th error

event. Using steps as above, this becomes

1/2
2G (D,I,L)	 d2	 E

PSil <	 1 a I 	D = e-E/2N0 	2n mN0	 (22)
II = L = 1	 °

The desired derivative may be numerically evaluated using finite differ-

ences.

To complete the analysis we simply must average these bounds with

respect to the K possible values for h (1) , as in (13), and the final

upper bounds become

K	 d2. E -1/2
Pe <	 f (7t	 Nln	 Gi(D,I)L)	 D = e-E/2N0 	(23a)

i=1	 0
I = L = 1

2	 -1/2

dE	 DG.(D,I,L)
PS
<
R	

2Tt i min	
^I	 D = e-E/2N0 	(23b)

i	 i	 o	
I= L = 1

Lower Bounds

Although upper bounds on performance are generally of most

interest, and in fact it is known that the upper bounds derived here

are asymptotically tight for large E/No , lower bounds may be of interest

and are easily calculated. One principal use is in assessing the region

for which the upper bound is tight.r	 k

16
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A lower bound on error event probability is provided by computing

the probability that a. nY. error sequence diverging at level n has higher

metric	 (correlation) than the transmitted sequence, and we can make

the lower bound tightest by choosing that neighbor sequence having the

minimum distance. As before, there. are K equiprobable selections for

the nth deviation, and a simple averaging of conditional lower bounds

provides the desired lower bound. The minimum distance depends on

the initial deviation. This minimum distance may generally be found by

listing short remerger events of length L defined by

L
F hn Yn = 0, mod 2n

n=1

and' evaluating the distance from the difference state transition dia-

^^rams. In complicated cases, dmin may be found using dynamiL' pro-

gramming on the difference-state trellis. (This is the same dmin

needed for the upper bound) .

These lower bounds to error event and symbol error probabilities

become

K	 d2 E
Pe > K E ci Q W mNn ) ^^ 2) 	(25a)

i=1	 0

2

PS > R x vi c iQw 
min )1/2

)	 (25b)
i=1	 0

where vi is the number of symbol errors on the various minimum dis-

tance paths. The bounds of (25) use only the minimum distance event

for aach possible starting deviation, and one finds the bound is weak at

low signal-to-noise ratios, particularly so when several error events

have comparable distances.
f

W
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IV. UPPER BOUND FOR FINITE MEMORY

The infinite path memory assumption of the previous section is of

course not realizable in practice, although one expects that if the

decoder delay is suitably large, then ideal performance is closely ap-

proached. Since we would like to operate with minimal delay and memo-

ry, questions arise about the effect of a given delay on performance.

We assume the decoder operates as follows. The Viterbi algorithm

performs trellis computations as usual, but maintains survivor paths in

memory for only N symbols. Thus at level n + N of the trellis, the

path with the currently best metric is located, and the oldest symbol on

its path map, corresponding to an is released by the decoder.	 Trellis

pruning is not performed. ti survivor paths disagree in the oldest posi-

tion. Relative to the case of pruning of such paths, P s actually is

smaller, and the analysis is simplified.

We classify error events into two classes: those made by an ideal

ML decoder operating with infinite memory; and those due to truncation

wherein an unmerged path has highest metric at the current time, and

the oldest symbol in its history is released by the decoder. Following

Hemmati and Costello [7] , we sum the error probabilities for each type

as	 an upper bound on overall	 error probability.	 This allows some

double-counting of error events.

Consider again the difference-state trellis, where the all-zero

sequence corresponds to error-free operation. An error event due to

truncation can occur at time n whenever a path splits from the zero

difference-state at or before time n and remains unmerged at time n +

N. With the aid of Figure 4, we illustrate error events of both types.

18
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all-zero difference sequence

I
n	 n+N

(release point)
	

(current depth)

Figure 4,, Schematic Illustrations of Error Event Types for
Decoding with belay N Symbols.
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Events 1 and 2 are of the type which could produce symbol errors at

time n in ML decoding, and were included in the analysis of Section III.

Event 3 diverges at time n and .remains unmerged at time n + N, so it

leads to a truncation error at time n.	 Finally, path 4 is a sequence

which diverged earlier, remains unmerged at n + N, and may produce a

symbol error at time n.

We assume for notational convenience that the decoder truncation

depth N is a multiple of the cycle length K, I. e. N = rK. Since multi-h

codes have apparently little theoretical or practical benefit for K > 4,

this represents no reM instrumentation constraint.

As before ' we analyze perfarmance for a specific deviation condi-

tion, then average with respect to the K such choices. We first let

h(1) be in effect at the time of interest, n. We wish to enumerate all

difference sequences which split from the zero difference-state at time n

or earlier, and which remain unmerged at time n + N. Consider the

matrix (T1T2 .. T V . This enumerates paths of length N = rK, and

the elements in the top row, except the upper-right corner element,

constitute the unmerged paths which split from the zero State at time n.

Similarly, TK (T1T2 .. TK ) r desci—ibes paths of length N + 1 diverging at

time n - 1.	 Thus we sum matrix products of order N or larger, and

define this sum to be A1:

M =[ I+ T + T	 ...	 T	 .	 r1	 K	 I{-1T +	 + TK	 1	 T +2	 K	 "] [T1T2"TK]

[ I + T  + TK-1TK +...+ T2T3 ..T K ] [ I - T1T2..TK]-1[TIT2..TK]r

(26)

20
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Finally we let G1(D,I,L) be the polynomial sum of all top-row entries in

A 1 , excepting the corner element, and term this the transfer function

for truncation error. Following the development of Section III, we have

that, conditioned upon h (1) being in effect at time n, the symbol error

probability due to truncation is upper-bounded as

P S	 < ?1 (n , T : L ) / (2n 1 dmin E2/No) 1/2	 (27)

truncll	 D = e-E/2N0

IT =L= 1

where 1 min refers to the minimum distance among all unmerged differ-

ence sequences of length N or larger, with h(1) in effect at time n.

Note the above is a symbol error probability and does not require

differentiation as in the infinite memory case. This reflects the fact

it	 that only a single error is released when a truncation error event

occurs.

It remains to formulate the bound when the other K-1 deviations

are in effect at time n. The matrices A2 through RK are similar in

form to that of (26) , except the subscripts are cycled in straight-for-

ward manner. Then similar bounds to that of (27) are found, each
2

using a different drain. Adding all such truncation probabilities and

cGviding by K provides an upper bound on Symbol error probability due

'to truncation, Pstrunc As earlier argued the final upper-bound is

obtained by combining the bound for infinte memory with Ps
trunc

P S	 <	 P S	 +	 P	 (23)
total	 ML	 Strunc

where Ps is given by (25b) .
ML
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V. NUMERICAL EXAMPLES

The preceding development has been applied to the earlier exam-

ple, as well as to two other codes: the binary (4/8, 5/8, 6/8) code

and a 4-ary {3/16, 4/16) code. The free distance calculations for these

designs	 project	 an	 asymptotic energy	 efficiency	 relative	 to PSK or

QP'SK,	 of 1.4 dB,	 2.8 d8,	 and -0.8 dB respectively. 	 The first two

have spectra comparable to that of CPFSK with h = 5/8, and the 99%

bandwidth is approximately 1.67 times the bit rare.	 The 4-ary code hao

a lesser bandwidth occupancy (the most rapid phase change is 3n/4

radians per two bits, or that of binary signalling with h = 3/8. Its 99%

bandwidth is approximately 0.7 times the bit rate, [8] .

Figure 5 illustrates the bounds for the {2/4, 3/4] code, for unlimi-

ted path memory and with N = 2 and N = 4. For unlimited memory,

the upper and lower bounds closely bracket the true performance for

typical levels of interest, say P s < 10-3 . Simulation results for unlimi-

ted memory actually lie close to the upper bound. All simulation results

include at least 100 symbol errors.

The decision depth (the depth in the trellis beyond which all

unmerged paths have distance exceeding d free ) is four for this code.

Thus we expect N = 4 should be quite adequate as a practical path

memory length. Indeed the upper bound is only 0.2 dB displaced from

the unlimited memory bound. Simulation results again confirm the

validity of the bound. With N = 2, dmin is appreciably less, and in

fact the efficiency is worse than that of PSK. This case indicates the

effect of a poor choice of N.

yq	
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figure ti presents upper-bound results for the K y 3 (4/8, 5/8,

e18) code. The larger asymptotic coding gain is clearly revealed, and

we also note this stronger code requires increased delay to realize its

;full potential, This is completely analogous to results for convolutional

codes, where increasing constraint length necessitates larger decoder

memory. The decision depth in this case is nine bits, and the upper

bound for N = 8 is asymptotically different than 'the unlimited memory

bound.

finally, results for a narrow-band 4-ary design are shown in

Figure 7. The decision depth in this arse is N1) = 9 symbols . Again

note that eight symbols of path, memory is essentially adequate to

achieve unlimited-memory performance, The asymptotic efficiency is 0.8

dB poorer than PSK/0,11 SK; however the spectrum is quite compact,

4-ary multi-h signalling appears to offer extra gain in the power/band-

width/complexity Grade-off, [91, [10], as is the case in other modula-

tions such as GPFSK and partial-response FM.

i
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3.0 4-ARY MULTI-H CODES

By allowing non-binary signalling, we allow more freedom in the

signal design and thus more Flexibility in the power/bandwidth/complex-

ity tradeoff. In more traditional designs, it is known that M-ary ortho-

gonal signalling provides power savings over binary signalling, while

M-ary PSK conserves in bandwidth. More recently, it has been found

that non-binary partial response FM modulation affords substantial

Improvement in power-versus bandwidth performance, (1]. 4-ary and

binary CPFSK are also known to be superior to binary CPFSK.

We have surveyed 4-ary multi-h phase codes with rectangular and

raised-cosine frequency pulse shaping, [2], It happens that to have

the full constraint length of K + 1 symbols for a multi-li code with K

deviations, that q, the common denominator of the rational deviation

indexes must be greater or equal to M K . This is also the number of

states in a maximum likelihood decoder. Consequently complexity grows

rather rapidly with M, and we chose to stop at 4-ary, 2-h codes, where

q = 16.

Table 3.1 lists a selection of such codes having full constraint

length, along with their free distance values. As for binary codes, the

best codes arc' those with h's clustered near a common value, e.g.

[3/16, 4/16) . figure 3.1 illustrates the performance graphically as a

function of h , the mean index. Note that for small li, raised-cosine

codes have slightly better distance (and slightly wider main lobe in the

spectrum) and that a gain of about 2 dB over 4-ary C,PrSK is typical.

This corresponds to the typical gains shown for binary 2-h codes over

binary CPFSK.
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Table 3.1 Free distance of 4-ary 2-h codes with constraint: length 3.

r
F	 ,

TYPE

Q	 P
1
Pte{
2

MEAN LINEAR PHASE CODES R.C, FREQUEWY CODES

d	 Decision
free

--72
- 
Decision

Depth, Tb free Depth, Tb

16 4 3 .219 3 1.688 18 3 2.103 20

16 5 4 .281 3 2.789 24 2.654 22

16 7 4 .344 3 3.454 * 30 3 3.217* 20

17 5 3 .235 1.776 22 2.008 20

18 8 7 .417 3 4.527* 34 3.249* 18

18 11 8 .528 4.076 12 3.249 10

19 8 6 .368 4.262 42 2.560* 28

20 4 3 .175 1.105 18 1.387 20

20 6 5 .275 2.774 34 3.095 36

20 8 5 .325 3.399 30 3 3.549 * 42

20 9 8 .425 3 4.798 * 44 3.095 12

21 10 8 .429 4.280` 52 2,517" 32

22 7 6 .295 3.226 46 2.499 34

24 5 4 .187 1.323 26 1.633 30

24 6 5 .229 1.998 36 2.419 42

24 7 6 .271 2.774 46 3 3.217* 52,

25 6 5 .220 1.853 36 2.249 42

25 10 7 .340 3.656* 34 3.726* 40

26 5 4 .173 1.136 26 1.406 30

27 8 7 .278 2.962 60 3.249 62

28 8 7 .268 2.780 62 3.285 72

28 11 9 .357 4.197 88 2.424 52

28 12 11 .411 4.646* 76 3.442* 40

29 6 5 .190 1.404 36 1.715 42

29 13 12 .431 4.838* 80 3.142* 12

30 9 8 .283 3.118 78 3.095 64

30 13 12 .417 4.877* 94 3.586* 22

31 6 5 .177 1.238 36 1.515 44

32 8 7 .234 2.190 62 2.612 74

32 10 9 .297 3.423 96 2.654 40

32 20 19 .609 4.739* 50 3.579* 36

* codes with best free distance among codes with cammon q.
3 codes of interest (having good power/bandwidth/complexity trade-off).

29



ORIGINAL PAC- Ewe
n`	 OF POOR QUALI Vd2

free (best)

S

4

3

2

1

0

.1 .2	 .3	 .4	 .5	 .6

H

f
i

Figure 3.1 Best free distance versus R. The codes are 4-ary

axles with linear phase and raised-cosine pulse

shaping. The unconnected marks represent codes with

wide-spread indices (the difference between the numer-

ators of the indices is greater than one).
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The spectral properties of 4-ary 2-h codes may be calculated

numerically using the procedure described earlier. An example is

shown as Figure 3.2 for the (4/16, 5/16) case. Hsu [2) has found a

quick rule of thumb for spectral behavior based on the mean index li .

Since the data values are [±1, ±3, ... ±M-1} and each symbol conveys

log M2 bits, we define an equivalent binary index as

K M/2	 h.

	

hb 
= K M/2 J11 iZ1 

(2i-1) log M
	

(3.1)

(lo 2^ M ) li
2

where h is the mean index, averaged over the K possible values.

M-ary codes having an equivalenthb are found to have nearly equal

spectral properties, i.e. 99% power bandwidth, etc. Since (M/2)/1092M

= 1 for M = 4 and M = 2, we infer binary and 4-ary codes with equal h

will have comparable bandwidth. This is illustrated in Figure 3.3,

showing B99 and B90 are equal withi.n t 10% when codes are compared

on the basis of fib .

Table 3.2 summarizes bandwidth and distance statistics for a

number of multi-h codes ranging from power efficient to bandwidth

efficient designs.

In summarizing the M-ary multi-h situation, we show performance

in the distance-bandwidth plane, Figure 3.4. 4-ary 2-h designs show

substantial gain over binary 2-h designs, particularly in the small

bandwidth region, say B99 T  < 1. Also, we observe the rather de-

pressing result that 4-ary single -h codes outperform binary 2-h codes

under a bandwidth constraint. Since complexity is probably no worse
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o : binary single index codes
4

	1.6	 to 4-ary single index codes

n : 8-ary single index codes

1.4

B99
1.2

2

1.0	 1
6
z

d 5x

0.8
i

2
0.6

s

0.4

0.2

B90

1 : binary {4/16,5/16} code

2 : binary {6/16,7/16} code

3 : binary {8/16,9/16} code

4 : binary {4/8,5/8,6/8} code

s : 4-ary {4/16,5/16} code

G : 4-ary {9/31,10/31} code

7 : 4-ary {12/30,13/30} code

e : 4-ary {19/32,20/32} cede

0 .2	 .3	 .4	 .5	 .6	 .7

Figure 3.3 90% and 99% bandwidths versus equivalent binary mean

index for various Mary single index, linear phase codes.

gAl.so shown are some nul.ti-h codes with comparable indices.
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Table 3.2 Bandwidth performance for multi -h codes with good
power/bandwidth/complexity trade-offs.

CODES B99 B90 Brms
mainlobe

BW
35dB 5QdB ing^gain,

QPSK 10.28 inf. 1.0 7.6 100.5 0
VISK 1.20 0.79 0.50 1.5 3.2 8.2 0

binary single h=5/7 1.80 1.01 0.71 1.4 4.4 0.92
4-ary single h=1/2 1.27 0.85 0.55 3.2 3.00

binary {4/2,3} l.p. 1.68 0.95 0.64 1.5 4.3 10.2 1.44
binary {4/2,3} r.c. 2.60 1.10 0.78 1.6 4.4 5.2 0.90
binary {6/3,4} l.p. 1.42 0,88 0.58 1.4 4.2 10.2 2.37

U
Z,	 binary {6/3,4} r.c. 2.45 1.04 0.72 1.6 4.3

1 4.2

5.0 2.49
44

o	 binary { 8/4,5} l . p. 1.34 0.86 0.56 1.4 10.2 2.49
binary {8/4,5} r.c. 2.39 1.01 0.69 1.6 4.2 4.9 2.70

binary {9/4,6} l.p. 1.40 0,87 0.56 4.1 2.32

binary {8/4,5,6} l.p 1 . 66 0.93 0.63 1.4 4.3 10.2 2.77
aNi	 binary {10/5,6,7}r.c 2.49 1.05 0.74 1.6 4.4 5.1 2.88

,H 4,	 binary {8/2,3} r.c. 1.40 0.60 0.39 1.8 2.8 4.2 -0.38

binary {10/3,4} r.c. 1.46 0 . 68 0.43 1.8 2.9 4.3 0.72

1^	
{16/3,4} l.p. 0.70 0.39 0.24 1.5 -0.74

1

4-ary

4-ary {16/3,4} r.c. 1.14 0.47 0.30 1.9 2.5 0.22

4-ary {16/4,5} l.p. 0.90 0.49 0.31 2.1 5.1 1.44

4-azy {16/4,7} l.p. 1.09 0.61 0.39 2.3 2.37

^4	 4-asy {16/4,7} r.c. 1.60 0.71 0.49 2.7 3.5 2.06

w4-ary  {20/8,9} l.p. 1.14 0.82 0.47 3.1 3.80

w
a^

I

i	
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Figure 3.4 Best free distance versus 99% bandwidth for various M-ary

multi-h and single index codes. The codes are of linear

phase transition.
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for the 4-ary single-h design, it seems questionable whether binary 2-h

codes, and even binary multi-h codes in general, should be studied

further. We do note that 4-ary 2-h codes outperform 8-ary CPFSK in

the small bandwidth region, and that the 4-ary 2-h class thus seems a

strong modulation candidate.
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h .0 CHANNEL SIMULATION

We have implemented a FORTRAN software simulation of a typical

satellite channel for purposes of assessing various effects on perfor-

mance which are induced by bandlimiting filters and /or saturating

repeaters. Discrete - time simulation seems to be the expeditious ap-

proach as analytical results of sufficient generality appear formidable.

The simulation package is essentially completed at this point, though no

error probability production runs have been completed,

The system being addressed is shown in figure 4.1. The software

Is highly-modular, so rearrangements of the functional blocks is possi-

ble; however the configuration of Flgur(^ 4.1 represents the situation

with post-modulation filtering and nonlinear amplification (either at the

ground	 station or	 in	 a satellite transponder),	 down-link noise being

dominant,	 and general receiver filtering.	 Coherent	 reception with

maximum likelihood decoding is alUo assumed. In the absence of filter-

ing and nonlinear distortion, performance is known for a variety of

partial- response,	 I'M and mu lti-h codes through calculations of minimum

distanee and	 error hounds. As	 with
	

other more	 classical	 schemes

however, the effect of	 cllanliel degradation is an important engineering

question. In particular it. is felt: by some that these newer- exotic

designs are less 'tolerant of distortion than say QPSK or MSK.

One may wonder why filtering is considered, since one of the

attributes of continuous phase modulation is improved spectral shaping,

with the potential for avoiding the need for post-modulation :filtering.

tt is however likely that, even so, some filtering will be performed for

one of several reasons. First, equipment with formerly-necessary

'	 I

I
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channel filtering may still be in place and is to be used. Second,

premodulation shaping alone is not able to attain spectral emission limits

in high performance cases, e.g. trying to maximize data rate while

meeting the FCC spectral mask. Post-modulation filtering to some

degree is a simple expedient. Finally, aside from the above factors,

the push toward high spectral efficiency will suggest moving bandwidth-

efficient signals even closer in channel spacing, in essence placing even

tighter specifications on spectral emission.

The simulation processes the baseband complex envelope of a

bandpass signal, and operates in discrete-time with eight samples per

data bit, chosen to safely avoid aliasing phenomena. The signals of

interest have spectra at 'least 30 dB down at the Nyquist frequency,

which is four times the bit rate in this case. The data source is a

255-bit maximal length shift register sequence, with an extra 0 ap-

pended to balance the sequence. With eight samples per bit, we gener-

ate 2048 complex samples as the signal sequence. These signal samples

are used repeatedly with new noise sequences to generate enough trials

to yield statistical significance in error probability estimates. This

choice simulates much more rapidly than an approach which generates

new signal samples continuously.
k
` The length of the PN sequence must be sufficiently long however

to generate all significant unique data patterns as far as the channel

output is concerned. Intersymbol interference is worse for certain

patterns, and all significant patterns must be generated in the correct

} proportion. One of the properties of maximal length sequences is that

a the relative frequency of different N-tuples is very close to that of a

coin-flipping proces p . With the degree of channel filtering expected for
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our simulation, a L = 255 bit sequence is expected to be adequate, as

the essential memory of the channel does not exceed 8 bits, and the

relative frequencies are correct for up to 8-tuples .

The receiver simulation adds white Gaussian noise to the received

signal and filters the sum (if desired) . The noisy discrete-time process

is processed by complex correlators to yield	 statistics for the Viterbi

algorithm	 receiver.	 The system as described has no carrier phase

shift, so this need not be compensated. However, there is group delay

roughly proportional to 1/(composi.e filter bandwidth) which is on the

order of one bit or more. This delay must be compensated by the

correlators, and can be done once for the various configurations. Our

timing quantization is Tb/8.

Once synchronized, the correlator outputs are passed to the ML

routine having an appropriate state trellis for the modulation. After a

sixteen bit delay, bit decisions are released by the decoder and com-

pared with the actual PN sequence to compile error statistics.

Note that the receiver is optimal for AWGN environments and acts

as if no channel distortions were present. Equalization could undoubt-

edly improve performance for severely bandlimited channels, and this

could be investigated. However we feel that the initial study should be

r'	 of the effect of channel distortion on performance of "conventional"

receivers.

4.1 SIMULATION RESULTS

We first present results for MSK, a case for which results have

recently appeared in the literature [1], [2], [3]. In Figure 4.2 we

show the power spectrum at the modulator output, after filtering, and

following hard limiting. The spectrum at the modulator output has side
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lobes which decay as f -4 , and well-defined nulls. The minor roughness

in the spectrum is due to finite-averaging of a random process. The

filter used was a 0.5 dB ripple, 4-pole Chebyshev characteristic with a

BT product of 1.0. Note that this filtering truncates the mainlobe

slightly, and obviously reduces sidelobe levels. The spectrum at this

point would be comparable to QPSK with filtering at the first null in the

spectrum (BT = 1). The interesting effect of ideal limiting is to re-

generate spectral "sidelobes" having level almost as large as originally

present. The power spectrum is smoother, and lobes have been era-

dicated. This is completely in accord with recent results of [1] .

Figure 4.3 presents similar results on spectra for a soft-limiter

modelled as an error-function characteristic for AM-AM and a 3 0 /dB for

AM-PM. This is perhaps more representative of typical TWT character-

istics. Note with 3 dB backoff, the total power, relative to that of full

output, is reduced, but more importantly the spectral regeneration is

less pronounced. Figure 4.4 does the same comparison with a 9 dB

backoff so that the characteristic is essentially linear; however the

AM-to-PM conversion effect is still present.

We also have capability for plotting amplitude and phase trajector-

ies of the signal enroute. Figure 4.5 shows the amplitude, or enve-

lope, of -the filtered signal for filtered MSK with BT = 1. The bit

sequence corresponds to 000000010111000. This plot gives an indication

of the amplitude ripple produced by bandlimiting a constant-envelope

signal, and in turn some notion of the severity of nonlinear amplifier

distortion. Phase plots are of more interest as phase is the informa-

43
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tion-bearing	 variable; however, the	 plots	 are currently difficult	 to

interpret	 because	 of modulo-2n restrictions	 in the angle definition.

Spectral results for double raised-cosine (DRC) with h = 1/4,

channel filtering with BT = 0.5, and hard limiting are shown in Figure

4.6. This design exhibits high bandwidth efficiency with B 99 T = 0.7,

and sidelobes roll-off as f-8 . We again note that limiting reconstitutes

spectral sidelobes to a large degree. Figure 4.7 repeats the analysis

for 9 dB back-off as above.

A similar set of plots is shown in Figures 4.8 and 4.9 for 4-ary

multi-h coding with deviation indices 4/16 and 5/16. The coding gain is

1.4 dB and the'B 99 Tb = 0.9, 250 less than for MSK.

The sidelobe reconstitution is an interesting phenomenon which has

received considerable attention for QPSK and offset QPSK. Basically,

when a signal is hard-limited, the rather smooth trajectories of the

filter output are "sharpened", moving a relatively larger percentage of

power to higher frequencies. (Only the phase trajectory varies at the

output of the limiter) . However the phase trajectories remain smoother

than at the modulator output, so sidelobe levels are still reduced by

filtering, then limiting. We have shown that the asymptotic rate of

decay at the limiter output is equal that at the filter output; however,

asymptotic rates tell little of absolute levels or where the asymptotic

rate pertains. We expect to study this further under the next contract

(NAG3-141).

4.2 SOFTWARE DESCRIPTION

The complete listing of the software mou", .:.^ is iouj:u in Appendix

A. Program SIMULI simulates a digital communication system with
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characteristics similar to those of a typical satellite link. It is com-

prised of five basic sections; source (SORCEI, MARY), modulator

(CPFSK, MULTIII, PARTLR), transmit filter (DIGBK), non-linear ampli-

fier (TWT) and receive filter (DIOBK) . Due to modularity, each sec-

tion can be easily modified or totally skipped depending on the applica-

tion, furthermore, after each section the user can obtain complete

documentation including envelope plot, and power spectrum phase tra-

jectory, (PHASP, ENVELOP, FFTBK) . When SIMULI is finished, 2048

samples of phase, represented in complex form are written to a file for

use withe the receiver program. The over-all flow diagram is shown in

Figure 4.10. A description of each section follows.

SORCI1 and MARX'

Subroutines SORCEI and MARY comprise the data source for the

simulation. SORCEI generates a length 256 psuedo-random sequence of

I's	 and -1 1 s and stores them in an array for future reference.	 The

sequence is formed using a 8-bit shift register with feedback.	 Subrou-

tine MARY converts the binary sequence generated by SORCEI into a

M-ary sequence of length 256/K, where K = 1092M and K is specified by

the user.	 The M-ary symbol values are contained in the set

(M-1)} and the mapping is arbitrary.

CPFSK, MULTII.1 AND PARTLR

Subroutines CPFSK, MULTIIi and PARTLR form the modulator

section of the simulation. In each case 2048 samples of the phase (8

samples per bit), represented in complex form are returned in a 2048X2

W.L.A^.
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u

CPFSK simulates a continuous-phase FSK modulator with deviation

parameter h specified by the user. 'phe psuedo-random M-ary sequence

generated by the source, in conjunction with h, detezmines whether the

phase should advance or retard and by how much. The phast^ varies

linearly over 1 symbol time with accumulated phase in = diihl'l/M, For

the special case h = .5 the modulation becomes MSh.

MULT111 simulates a multi-h phase code modulator with h,,h, ... hK

specified by 'the user. MULTikl is similar to CPVSK except that h is

now time varying.

PAltlJ': R simulates a partial response IN code modulator with the

response time K, the deviation parameter 11 and the: pulse shape g( T)

specified by -the user. The pulse shape g(T) can be either rectangular

or raised -cosine rand lasts a total of K symbol durations. The composite

phase at any one sample point is thus a function of the phase induced

by the present symbol di1 and the phase induced by K-1 symbols of the

past. For the special case K = v and g(-c` rectangular (binary source),

the modulation is known as duobinary FM.

Dl't;l3K

Subroutine DlGBK simulates a low puss, 4-hole Chebychev digital

filter with bandwidth BW specified by the user. The filter coefficients

are pre-calculated by a digital filter design program employing the

bilinear transformation and then stored on disk for future use. Sub-

routine DIGA 11, within 1)TGBK reads these coefficients off the disk and

filters the time series data via a recursive difference equation tech-

nique. The time series data is run through the filter twice to establish

steady state conditions.
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TWT

Subroutine TWT simulates a non-linear amplifier with characteris-

tics similar to those of a Travelling Wave Tube amplifier used in may

satellite transponders. Output distortion is a combination of two ef-

fects, AM-AM conversion and AM-PM conversion.

With AM-AM distortion, the output envelope is a non-linear func-

tion of the input envelope. The non-linearity is either a hard limiter in

which case the output envelope is set to unity regardless of the shape

of the input envelope, or a soft limiter described by the equation y =

erf(x/6) . In the latter case Q controls the degree of limiting; i. e. as a

increases the amplifier becomes more linear and as cr decreases the

` amplifier saturates and behaves more like a hard limiter. Erf(x/Q) is

computed using a 5-term power series expansion with maximum error

less than 7.5 x 10-8.

In AM-PM conversion, fluctuations in the input envelope cause

phase distortion in the output waveform. This distortion is modeled by

a 3° per dB characteristic, i.e.

0 = — (3.0/57.3) 20 log(A)

where 0 is the resulting change in output phase and A is the magnitude

of the input waveform.

FFTBK, PHASP and ENVELP

Subroutines FFTBK, PHASP and ENVELOP comprise the documenta-

tion section of the simulation. FFTBK computes and plots an estimate

of the power spectral density, S(f), while PHASP computes and plots a

phase trajectory (modulo 211) and ENVELOP computes and plots the

envelope or magnitude of the complex time series data.
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Within subroutine FFTBK the time series data is .first pre-multi-

plied by a Hanning window of the form

H(n) = .54 + .46 cos (2048)

to improve accuracy at low values of S(f) (-50dB down). The modified

time series data is transformed into the frequency domain via a 2048

point complex FFT. The magnitude of the resulting, frequency samples

are then averaged with 10 adjacent samples to provide a smoother

estimation of the power spectral density.

^	 P u
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OF POOR QUALITY

C	
PROGRAM SIMULI

c	 THIS PfiClCiRAM SIMULATES A DIGITAL C OMM• SYSTEM
c	 INCLUDING THE 1= Clk.l.OWING COMPONENTS; SOURCF(DINARY OR M—ARY)

MOriULATOR (L:1 ='I° SK v MULTT.....H v PART'LR) v XMTR FILTER (4 POLE CI°IC} BYCHEV
TWT NONLINIii:flRIT'Y(I°IAI"D OR SOFT L (MITER) v RC:VR FILTER

REAL MGDa;li(4) vH(3)

DIMENSION A(204£3v2) v:IBIT( ?56) vflRC204£x) v(-I( ?04£3)
EQUIVALENCE CA(a.va.)vAR(l))p(A(lv')rAI(:L))
BYTE. AN a v YEA v TM1 ='i= :I L (:I 5) v COR1= IL (15 )
BYTE TFNAME (:I S) v RFNAMf : (:I.5) v F NANE (1. S) v TWT:I: D (4 )
DATA 1= S/£a e O/ v NDATA/M?;° 6/ v IEXP/11/ v MRY/:L/
DATA FNAMI"
DATA TFNAME /' N' v ' (7' v ' N' v ' E' v :I 1 *'
DATA RFNAME /' N' v ' 0 v ' N' v ' E' v :1.1,*'
DATA TWTID /'N'v'O'v'N'v'E'/
DATA YEA/' Y' / v N/0/ v H /3*0. 0/ v N'T' /0/
DATA TMPFTL /'T'v'M'v'!-„v'Ffy'I'v'L.'v9m1
DATA CORFIL /' C' v ' O' v ' R' v ' F' v ' I' v ' L' y 9*'
DATA M(7DID /4*' 	 '/
CALL ASSIGN (50vTMP'I :I:L_v14v'NEW')
NL' =IFIx (F£3) SNDATA

C:	 GENERATE 255 BIT PN BINARY OR M — ARY SOURCE
(a
20	 CALL SORCEI (NDATA v :I BIT )

WRIT( (7x212)
212	 FORMAT (' OB (NARY OR M—ARY? (0 OR 1) ' )

READ(0214) TANS
214	 FORMAT(15)

]:FCIAN .E0.1.) CALL MARY(NDATAYI:BI:TPMRY)
C

CHOOSE MODULATION TYPE
C.'
25	 WRITE (; v:I.98)
198	 FORMAT (' OCI°IC.J(:)SE MODULATION'/

X' TYPE'//

8'	 2,	 MUL.T':I:....I..I'/
Z' 3, PARTIAL RESPONSE'/

n
5t3
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READ (S Y 200) I SW
2 00
	

FORMAT (16)
IF(IaW * E0ol) CALL CPFS K( A YND Y NDATAyFSyC]~ITvH(l)yN
&YMODIDYMRY)
IKISW .EP* 2) CALL MULT:IW(AYNDYNIATAYFSYXBITYHYNYMOI:ID

&YKYMRY)
I r- (IOW. r_Q , 3) CALL. I ARTLR(AYNDYNDATAYFSYIBI TYH(I) YN
&YMODIDYNrYMRY)

(11

(::
	

OTHER BRANCHES MADE HERE AS THEY BECOMEOMC AVAILATi{LE
(J

IF (N .NE, 0) 00 T O 27
CALL PRINT(' NOT IMPLEMENTED AT THIS TIME:')
00 TO 2

r^
DOCUMENTATION (PHA SEaE: TRAJLCTOR Y I' FT Y ENVELOPE PLOT)

(a
2
	

WRITE (7v220)
220
	

FORMAT (' OPHASE T'RA,JECTOR PLOW)

I1= (AN S.EQ.YEA) CALL PHASP(AYARYAIYND)
CALL FFTBK(A Y AR Y AI Y ND Y :I:EXP)

(::

C
	

XMTR FILTER AND DOCUMENTATION
C:

CALL PRINT (' DO YOU WANT CHANNEL FILTERING AT THE XMTR :' (Y/N )' )
R EAD (S Y 204) ANS

204
	

FORMAT (K)
:I:f-' (ANS .NE, YEA) 00 TO :30
CALL D I BBK (A Y AR Y AI Y ND Y TFNAME )
WRITEKY206)

206

	

	
FORMAT (' ODO YOU WANT AN ENVELOPE PLOT (Y/N) ' )
READ (', Y 204) AN;3
IF (ANS . ECG. YEA) CALL.. ENVELP (A Y AR Y AI Y ND Y FS )
WRITE(7Y220)
REA (::; Y .'04) ANS
:IF(AN>.EU.YEA) C:AL.L.. PHASP(AYARYAIYND)
CALL. FFTBK (A Y AR Y A I Y ND Y :I EXP )

G,
G,
	

'rWT NOL IN AND DOCUMENTATION
G,
.30
	

CALL I° PINT (' DO YOU WANT A TWT SIMUL..AT':I:ON? (YIN)')
READ (5004) ANS
IF(ANS NE, YEA) 60 TO 50
CALL T'WT (A Y ND Y T'WT ID )

READ (0204)Y 204) AN::i
IF (ANS , EU o VEA) CALL ENVEL.P (A Y AR Y A I Y ND )
CALL FFTBK(AYA YAIYNDY:IEXP)

Cl
C:
	

RCVR FILTER AND DOCUME:NT'AION

i
60

1l
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50 CALL PRINT('WOULD YOU LIKE ADDITIONAL CHANNEL FILTERING (Y/N)' )
READ (F, y 204)	 ANS
IF (ANS .NE. YEA) 00 TO 60
CALL D I GBK (A y AR y A I y ND y RENAME )
WRITE(7y2O6)
READ (U y 204)	 ANS
IF (ANS	 .ECG.	 YEA)	 CALL ENV1=LP(AyARYAIYND)
WRIT07Y220)
READ(S y 204) 	 ANS
IF(ANS.EQ+YEA) 	 CALL I° HASP(AyARYAIYND)
CALL FFTBK (A y AR y A:I: y ND y IEXP )

C
C WRITE TIME SERIESS DATA TO A FILEE
C

CALL CLOSE(50)
60 CALL. PRINTVDO YOU WANT TO WRITE SA MPLES TO A FILE? (Y/N)' )

READ Q Y2.04) ANS
I1= (ANS	 . NE +	 YEA)	 00 TO 70

2 CALL PRINT (' :I;NPUT FILENAME')
IERR=O
CALL GETSTR(;: v	 NAME y;L4r I:ER	 )
CALL A SSIGN (I O y F'NAME y 1.4 y ' NEW' )i
WRITE(10) FNAMEYMC1X:IDYNTYHYFS,'YFNAMEYTWT;cDYRFNAMEYKYa:BITPA
CALL CLOSE(10)

70 WRITE(0208)	 FNAMEY (MODID(,J) y w1 =I y :?) YNT y (M(7D I:I; (J) y,.1=3y4)
WRITE(0209)	 H(:I.) PH(2) YH(3) y F'f: YT F'NAMEYTWTIDyf• FNAT'ir-

' 208 FORMAT('0SUMMARY OF SIMULATION'/
&'OFILENAME:	 '	 15AI/
&'	 MODULATION TYPE: 	 ' y 2 A4 p 3X y l2 y 2A4 )

209 FORMAT('	 HCI)=' yFB * 3 y 3Xy'H(;?)= ' y FBo3 y :3Xy'H(;3) =' YF£1.:3/
&'	 FS=I yFB,3/
&'	 XMTR FLTR:	 'yl5A1/
&' TWT	 :	 5 4A1/
&' RCVR FLTR:	 415AI)
WR ITE(0210)

210 FORMAT	 ('081MUL.ATION IS COMPLETE')
STOP
END

1

1t
4	 ':

{

s

I
I
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,^	 s
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SUBROUTINE SORC EI (NDATAr IDIT)
C
(a
	

THIS PROGRAM SIMULATES A 255 BIT PN GENERATOR
C
	

NDATA :: t or SOURCE 5:'t;I: T;. r x+I T''° DATA r (1=0 0= —1)

C
DIMENSION IB.T.T(N5: ► AT'A)
LOGICAL DCB)PF(3)
DATA IU/32707/ r IX 3 7 057 3
DATA D 3 7*, 1= AI. E #Y . TRUE, 3
DO 50 I ;: l r N5: ► ATA
1= (l)=C ,NOT'.D(8) ,AND,D(:) )
F(2W ,NOT +F(f) .ANI: ► >5:► (3) )
I=(3)=(,NOT.I=(2),AND,D(2))

,00 (Ii(0) ,AND, (,NOT,D(7)) )
, O R+ ( F(I),AND*(.NOT+D(3)))
.OR+ (r(2),AND, (,NOT',5: ► (2)) )

i..
PERFORM THE RIGHT SHIFT
00 30 ,J-1 r 7
5:► (9—,J)=5:► (B—J)

30
	

CONTINUE

IF (I► (la),ISCd„WA L»>EP) J:DIT(I)	 Q.
IF (D(8),E0,.TRUE,) :I:BIT'(I)	 I

50
	

CONTINUE
RETURN
END

d't

6^
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SUDROUTINI. MARY (NDATA Y ID ; T Y M )
C
1 "I°I7: i	 :3lJZ:;I^Clt,1'r'xN : 	 hiAF'S	 Yr:fNAI'^Y	 DATA	 INTO	 M°. ANY	 DATA

t^
DIME1N,310N lV.T'r(NI.Al'o)

20 WRITC(7v200)
200 FORMAT (' 01NIPUT K	 (W:.:2*,$'K	 F M As .T.N M--ARY )' l

V	 l<' 	 K	 .--6t)

RE A D	 (	 r	 1 0)	 M

10 F 0 R M 0 T (J:;;i )

X	 (M.LE".l)	 00 TO 20

i	 rm
zr (M#0E*6 1 00 TO 20

j	 to r'ERIr0RM	 Mi111='1:NQ

C:
4

L=O
- ;'*R:0

MlNBIT	 : ')%M) f-:L
:30 DO	 80	 I<''^ 1. r NDATA v M

L-::L4,a
i "in M]:N D ]:T
D0	 60	 1 :4: :I, v M
J:1- ( r ro: 'r ( I ^	 L" o , -:1. >	 :C 1"(11 ,'r ( K 4. T .,,. :1,) ::: 0
. 1 ::. 1 .1, (1,2%k	 ( M.4.14 	 *:Lrt:C'r ( K+.E ..,. a. )

`	 60 C: ON'rTNCII:

1r.3 I T ( L
;30 C 0 NTT NUL:

R TURN

a

all



OF POUR QUALITY

;31J)~ROUTINE CFFSK( AYNDY NDA T(tYFSY:CT:ITYHYNrhiDt:► 7DYM)

c	 IrNIS PROGRAM SIMULATES q I° 6K AND RETURNS SAMPLEDC	 VALUES IN AN ARRAY (A) , A"OUTPUT AI" RAY y NDATA m$ OFc	 SOURCE BITSY F a"SAMPLI:NU 141tEQUUNGY RELATIVE TO DATA RATE
CDEVIATION

DIMENSION A(NDy2)vIDIT(NL ►ATA)vTODID(2)
REAL. PIyMt,D:I:l;► (2)
DATA TOD I D/' CP—F' y ' SK I/
DATA PI/T t :l4;1;•:i92/ y ANG/0. / y K/0/
DATA OF ST/0 , 0/
M0DID(:l) =T• ODID(:I. )

C
C	 DETERMINE MODULATOR PARAMETERS
C

WRITE (7000)
100 FORMAT	 ('OTI-IS SIMULATES G;P—F'SK.'/

$'	 INPUT H')
READ	 (S v 102)	 1-1

102 FORMAT	 (F6,3)
IF'S IFIXCFS)*M

rc
NSYMT:{L-NI: ATA/M

O PERFORM SIMULATION
C;

:C=0
10 :I:=a+J.

J=O
20 J :-,.J+.'L

ANfa ::: DFST+ C I B I: T (:I:) %kHdtiF''I: sj) / (1 = S*M )
K=Kf:1.

A(KPI)=C.:OS(ANG)
A(KP2)-S I:N(6NGi)
:I:F'(J.L.T.:I:FS)	 00	 TO	 20
OhST=OF• ST I• :fBIT(T) *NfP.'c
IF'(T.1..T'.N; Y1'ili;l...)	 80	 TO	 :LO
:IF(h;.EQ,ND) 60 TO 50

00	 TO	 .I.0
50 CONTT.NUI:r:

N-1,
RETURN

n,	 64



C
c

rcC

c

N=j
NcYMDL= NDATA/M
I c = :c l• I X ( 1 =' i) * M

INPUT I°• (1RAMET'lwRS (I<y H (K) )

WRITIc (!y200)
I° O RMAT('OT'I••IT.;3 SIMULATES	 A	 MUL..'T':C••••H
S' INPUT h W OF H PARAMETla:RS V
&'	 (NCITEY	 KMAX ....	 ;3>	 )
I" EA)»► (;: 202)	 K
i"'ORMAT (:I:	 )
.LI- (KoL.I".4)	 00 TO 30
WRITE(0204)
f- ORMA T' (' OKMAX ••.• 	 3y	 INPUT 	 V)
00 TO .'/
WRIT'is (7 y'2 06)
1='ORM AT'(WI:NPUT H(1.)y.+.H(K)')

I° ORMAT(w3F6.;;3)

P ERFORM S IMULATION

rrc

c

C
25
200

27
202

x'04

;3 U
206

208
r.:
c:

C "7; v^	 r.
YH,, li. ^"l K:
	

",
OF 	M

S UBROUTINE MUI_.T:I:H<A yMr:► r NDATA rFSv IDITrMPNrMUI; ► TDrNyM)

TI°a 9 SUBROUTINE SIMULATES A	 M1.1L1°:C.,.•I.•I 	 f'I°IFtSE CODE
MODULATOR-	 WINE
FS=

SERIES DATA y NDATA ;t OF DATA BITS ySAMPLING RAT1= y
N	 SET	 TO	 :I. y	 MfJD I: T: m

7:BI T':,: DA'T'A
:CDENT':I:F

BIT (1RRAYy I-I&EMIT
ICAT':I

ION I°'ARAMi:u1 ERE

M AS IN M—ARY
ON Y K=* OF H PARAMC T ER n y

DI MENSION A(NDY2) y M(;3) s :CI:I T'(NDAT'A) PT'C1z: ► :(D(2)REAL MO;:► :I:T:► (2)	 ."
DATA TCIZ:► ID /' M1.1L T' y ' .I: •• H ' / y ANC, /pop/: p l /3+14159/
DATA KMAX /3/ y L /U/
Mf7I:► ID(1.)=Tf7DID(1.)

PHA SE CO DE MU T1 ULnTOR I /

C)FS T•::0.0

i so	 I:a:+1.
MH::Mf.)D(:I:+(K.•••1.) yK)•1•:I.

f	 J=U

ANfi=D S1.+(:C)~:;:I:T'(:I:) ; H(MH)1'cPI:*J)i (I"';i *M)

A(L. y :I. )..:cC)SCANG)
A(I..y2):;:;31;N(ANG)
IF (J,LT.IFS) 00 TO 7S
C)I°' S T C)FST'•4•:I:B:I:'T'(:I:) N(MN)*Pl
!I= (T.LT. NSYMBL) CiO 'T'(.7 ;`.0
1:1= (L..I::U.NT ► ) 00 TO c
IFS M ND--:C1= ;: *NSYMBL.
60 TO 50

90	 RETURN
LNTI

Yc	 65
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SUBROUTINE I"'6RTLR(AYNDYNX;AT'6rl"SP Flits;T'rWrNrMUDIDYNT'TrMRY)
(11

C;	 TI-ITS 1='RCTCiRAM SIMULATESS A PARTIALAL. RE SPONSE FM (aODU
C,	 MODULATORT OR FCllr TWO TYPES or PUL. SES v X; ► 11C)DINARY FM
C	 ( N —REC:ThNOUL.hR) AND DOUBLE RAISED COSINE (NRC< )
(a	 An TIME SERIES .l` ATOP NDw # OF DATA POINTSe P!DAT AQ OF
(I	 DATh DIT;Sr F';5=ISt1HPL IN(r)' RhTl; r :IBIT n DATA BIT (1RRAYv ,H-.;

C;	 X, EV.1 6T;I ON F't'tRAMF£TER Y N IS SET TO .I. v MC)X;I:C)G m ID EN, NT.T=RES..

C:
DIMENSION ACNDv2) vIBIT'(NT' ► 6TO) PT'ODID(6) v:I:PREV(r )
hEAL,, tiCID:I:D ( FT )
COMMON P SvPI;vPHvN'TvMM
DATA T'l';)DID /'I ART'v'RE SP'v'—I';EC'r' 	 'r' —RC'P'	 '/
DATA PI .'`3, LET:I.:;i'i' ''6:'i35V/ v K/0/
DATA NTMOX /7/
h'1= S=F S
N n:l.

MC1DID(2):::TCIDID(2)

C;
0	 DETERMINE MODULATORATOR I' ARAMii Tl' R S (P UL.,;SF„ ';Sh•I(1P1= W
C

WRITE (0200)
200	 FORMATVOTHIS SIMULATEST'I" S A PARTIAL. F1fi.£i>PON;SE FM MODUL ATCIR /

A' FOR TOE FOLLOWING CASESV
S' It DU(JX' (NARY FM (N°°REC:'TAN( Ul.. AR) V
S' 2, DOUBLE RAISEDD C O STNFE, (NRC:) ' /
V W H I, C I°I'? > ' )

30	 REABCSY202) 16W
202	 FORMAT (16)

IF(ISW,BT,2) 00 TO 40
IF(ISW.Lr.A 80 TO 40
00 TO 50

40	 WRITE(0204)
204	 F ORMAT (' ONC) ;SUi,,H C;I°I(7:CCE r C;LI(aC1SE AOA I: N' )

60 TO 10
so	 WRI:TI; 0008)
208	 F ORMA'T' (' 0I NPUT H v NT' /

3' (N'T, DURA V ON OF F'REK PLII...;: E v NTMAX=7) ' )
RG%AD(;': Y21.0) HvNT'

210	 FORMA (F'60v;I:S)
N T" T' N T.
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]:I^(N'1".!_.1'.N'T'Mtl;c) 	 00	 '1"(J	 8()
WRIT E & Y 1 ti 8)	 N'T°MAX

1913 FORM(1'T' ('	 NT MUS T I":^E <4 15)
00 TO 50

so CONTINUE
IFKSW4l-Q * 2)	 Cat:)	 T O	 85
MODID(3)='T'OD:I:D(3)
MODID(4):.TODID(4)
00 TO 07

85 MOD ID(3)=MODID(S)
MOI:ID(4)=TOIJID(6)

.37 C0NTINl.11:
I., W..I-I
IFB=I1= IX (FS) *MM
NSY'MBI. -NDATA/MM

C
C PERFORM SIMULATION
c

DO	 90	 IN :::: :I Y N'T' — 1.

90 CONT:I:NW.i.'
IPREV(1):.::fBI:'T'(:I.)
D=0.0
M=O

100 M--Mf l
, ,1.: q

110 ,.1m.. f:I.
I<=Kf 1
L ,. J
Px:0.0
D (J	 12 0	 J. N	 :I. Y NT
1-'=I-'•{'•1-'HASL:.(.CI-' R EV(.lN) YI-.Y .I.SW)
L=I...'f' (B kMM )

120 CONTINUE
P _:: D.¢.1:,
n(I<Y1)-:CDS(P)
n(KY2) :: SIN(-')
IF(.J,LT, IF S)	 0 0 	 TO	 110
D := D+PI-I*PI*IPR1=:V (N'T' )
DO	 135	 IN=I Y N T -•:I.
J:PREV (NT+I-°IN)=I1"'htEV(NT-IN)

:1.3:a C 0 N'T' I P w11=
r :1:1=' (M. GE. NSYMI:+1...) 	 GO	 TO	 140
6 :I PFile'V (I) -IB I:'T' (M •i l )

00 TO 100
:140 I1= (K,E0,iND)	 GO TO 150

:1:1= S=ND -•:1:I- S*N`3YA'iBI-.
:I:1='REV(:L)=I:B I:T(M+I )
GO T O 1. 00

150 RETURN
RETURN

C'
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END

-
^

REAL FUNCTION I'll AISE(L,M,N^
 COMMON PFSvPI,PH,NT,MM

IF(N ^ E0,1) GO TO 50
PHA=^PH*P%*LNT^^M) .
PHAS^SIN((2^0*PI*M)/(PFS*NT*MM>>
PHASE=PHA*<(M/PFS)~(((NT*MM)/(2^0*PI))*PHAG))

. ^	 RETURN
5O	 PHAS	 L*PH*PI*M	 NT*PFS*MM>

! RETURN
[ END[	

.
'	 *

^

^

^
^

-

..
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SUBROUTINE ENVELP(AxARvA%vNDvFS)
C
C	 THIS PROGRAM PLOTS A GRAPH OF THE SIGNAL
(11	ENVELOPE VS, TIME, A=TIME SERIES DATAv ND=
C	 # OF DATA POINTS, FS=SAMPLIN8 RATE, AR(K)=A(K,1)
C	 AI(K)=A(Kv2)
C

DIMENSION A(ND,2),AR(ND),AI(ND)
REAL*8 XNAME(2)vYNAME(2)
DATA %NAME /' TIME /,/ SECONDS'/
DATA YNAME& SIGNAL /,'ENVELOPE//
NS=1OO
NSMAX=15O 
WRITE KO>A

C
C	 DETERMINE PLOT PARAMETERS
C

WRITE (7,200)
200	 FORMAT('OACCEPT (<CR>) OR CHANGE (KNEW VALUE><CR> THE//

&' NUMBER OF SAMPLES TO BE PLOTTED(NS)//
&' (REMEMBER, # OF PAGES=NS/51)1)
CALL INTIO(~	 NS/YNS,NSMAX,0)

C
C	 CALCULATE MAGNITUDE
^

DO 10 J=1,NS
AI(J)=SQRT(A(J,1)**2fA(J,2)**2)
AR(J)=J/FS

10	 CONTINUE
C
C	 PLOT ENKLOPE ON CRT OR DECWRITER AND SAVE DATA
C	 ON FILE FOR HP-PLOTTER
C

PAUSE 'ROLL PAPER TO NEXT TO BOTTOM LINE THEN <CR>'
DUMB=U.O
CALL PLOTR(AR,AIYNS,XNAME,YNAME,O.0,1^25,1)
CALL HPPLT(AvND,NS)
REWIND 50
READ (50) A
REWIND 50
RETURN
END

*

/
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200

202

C
C
C

50
C
Cl
C
C
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SUBROUTINE PHASP(AvAR,A%,ND)

THIS SUBROUTINE CALCULATES AND PLOTS PHASE TRAJECTORIES,
PHASE = ARCTAN(A%/AR) MODULO(2PI)
A=TIME SERIES DATA, ND=# OF DATA POINTS, AR(K)=A(Kv1)
AI(K)=A(K,3),

DIMENSION A(ND,2),AR(ND),AI(NO)
REAL*8 XNAME(2),YNAME(2)
DATA PI/3^141592654/
DATA XNAME/ / PHASE	 /,/(RAD)	 '/
DATA YNAME&SAMPLE 'v/INDEX	 ^/
WRITE(50) A

DETERMINE PLOTTING PARAMETERS

TP=2*PI
IFP=1
NP=150
WRITE(0200)
FORMAT('OPHASE TRAJECTORY PLOTTER'/
&' ACCEPT(<CR>) OR CHANGE<</NEW VALUE><CR>>
&/ THE # OF POINTS TO BE PLOTTED(NP')
CALL INTIO(/	 NP/,NP,ND,O)
WRITE(0202)
FORMAT('OF%RST POINT TO BE PLOTTED(IFP)')
CALL INTIO(/	 IFP',IFP,ND-NP,O)

CAALCULATE PHASE MOD(2 PI)

DO 50 J-IFP,IFPfNP
AI(J)=ATAN2(AI(J),AR(J))
AR(J)=J-1
CONTINUE

PLOT PHASE TRAJECTORY ON CRT OR DECWRITER AND SAVE DATA
ON FILE FOR USE WITH HP~PLOTTER(SUBROUTIN HPPLT)

CALL HPPLT(A,ND,NP)
PAUSE 'ROLL PAPER'
CALL PLOTR(AR,AI,NP,XNAME,YNAME;-4*PI,4*PI,0)
REWIND 50
READ(5O) A
REWIND 50
RETURN
END

*

70
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SUBROUTINE 1= FTBK(AvARvAIvNDvT XP)
C
(:; THIS SUBROUTINE COMPUTES AND PLOTS A POWER SPECTRAL
(; DENSITY VIA A HAN NZ N G WINDOW FOLLOWED BY A FF'T AND A
c N--POINT SMOOTHER * 	A = TIME SERIES DATA v ND=* OF DATA POINTS
C IEXP=LOrw(ND)v	 AR(K)=A(I<v:l.)r	 AT(K)=A(KY2)
C

REAL** XNAME(',)vYNAME(M)
DATA XNAME K	 ( 1= /R)	 ' v '	

I/
DATA YNAME/'	 GAIN	 ' y '	 (DB)
DATA PI/3.:I4:I59265358/
DIMENSION  X(9.'29)
DIMENSION	 A(Nl: y2) vAR(ND) vAI(NI.) yB(2) vC(2)
BYTE ANa vYEA
DATA YEA/'Y'/

C
WRIT'E(0202)

202 FORMAT	 C '	 DO YOU WANT A 1 = IT T?	 C Y/N) ' )
READ (S v 204) ANS

204 FORMAT (Al)
IF (ANS	 . NE:,	 YEA)	 RETURN
WRITE (50) A

C
(:: MULTIPLY TIME SERIES DATA BY HANN:I:NG WINDOW
C

" DO	 20	 Er' :::: :I v ND
Y = 1= L.OAT (K-°ND/2) /FLOAT (ND )
W-0* '('0*5*CO3(2*F'I*Y)
A(I<v1)=A(Kv:l.QW
A(Kv?) M•A(I<v?)*W

20 CONTINUE

C
CALL 1=F'TR(AvNDYIEXPv-I.)

C, DETERMINE SMOOTHING AND PLOTTIN G PARAMETERS
C

KS=l .
NI... F'-512
NNI:i .. ND/2
NIseP=4
WRITE(7y206)

206 FORMAT	 ( ' OAC;{::EPT	 (<(:;f'>)	 OR	 CHANGE	 (/'::NEW	 VAL UE::XC:R>	 THE'/
S' FOLLOWING PARAMETER VALUES ASSOCIATED WITH THE PLOT'/
A'	 0 OF SAMPLES BETWEEN PLOT POINTS	 (NBP) Y ' )

.ti

71
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C A LL.. TN'TIO('	 N>< P IYN tP Y40 y 0)
CALL PUTSTR (7 q ' L AS T SAMPLE POINTI:N'T• TO BE PLOTTED (NKP) ! ' s 0 )
CALL. IN'T'IO('	 NLPIYNLPYNNDYO)
WI°tI1"Y 7 r ;?0C1)
1- ORMAT (' OSMOOTHING COIN iTAN'T' 0 4S) ' /
8' K5 MU ST BE c7T: D r I<:• =l FOR NO SMOOTHING')
CALL IN'T';EOQ	 Ki'YK;:Y15v0)
KSI=(KS -:L)/2

K 9 2 •w KS I +•:L
NP T S =NLP/NBI-'

CALCULATE MAGNITUDE AND F'EI"il-'ORM KS—POINT SMOOTHING OPE RA TION

DG 25 J=:L Y NND

IS==O
DO 27 J=I v NL P P NBI-".
I K+:L
X(K )=O+
IM=MAXO (J — KSI s :I. )

DO 26 KK=IMYJ+KS:L
X(K)mX(K)•+AR(KK)

IM2=MlN0(5vJ•+•IcS2••-IM)
X(K)-X(K)/I•=LOAT(:EM2)
X(K)=10.*ALOGl0(X(K) )
]:I•= (X(K).L.T,-50,) X(K):•••w•50t0
AR(K)= LOAT(J-..:L)/256#
DO 2B KK=lvNPTS
AI(KK)=X(KK)

PLOT POWER SPECTRUM ON CRT OR DEC,;WRI T'ER AND SAVE DATA ON
FILE FOR HP—PLOTTER*

CALL HPPLT(AYNDYNPTS)
PAUSE 'ROLL. PAPER TO NEXT TO BOTTOM LINEi. THEN <CFt:::•,

CALL. PL O T T (AR v AI v NP T S P XNAME v YNAME:: v — 50 .O r 50.0 ; l)
REWIND 50

REWIND 50
RETURN
END

u

I
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.r
SUBROUTINE TWT (X Y ND Y TwT ID )

c
C; THIS SUBROUTINE SIMULATES A TRAVELLING WAVE TUBE

C TYP E AMPLIFIER*	 X:::: TIME SERIES DATAY	 ND=*OF DATA POINTS

C TWT IK:IDENT:IF :ICAT:ION
i c AM-AM DETERMINED BY FUNCTION Fl

C AM—PM DE T ER MINEDNIa D BY FUNCTION F2

C
DIMENSION X(NDYM)
BYTE TWTID (4) Y DWT:I D (4 )

DATA DWT ID
DATA 5/1.0/
DATA PI/3.141 59265359/
COMMON 5YSP
SP =I .0/ URT (':.'*Pl )

4DO 5 J=04
TWT:ID(J)=DWTID(J)
CONTINUE

a C
C DETERMINE LIMITER TYPE (AND) SIGMA

c^
50
200

WRITE000)
FORMAT (' OI'•IAI^ D	 LIMITER	 ORSOFTI..:I.M:I:'r'Ga;'6' 	 CO	 OR:L) ' )

R E AD( SY M•'.:I.0)	 .I. S W
I 210

f
r- ORMAT (41 )
.I. I" (.ISWaE 0 41)	 00

	 TO	 60
1I"CISW,NEo0 )	00	 TO	 50
00 TO 70

^('t.>	 1 WRITI:(7Y^20)
FORMAT(KINPUF SIGMA"
READ ('S Y 230)	 :a

230 FORMAT (F 6 , 3 )
C
C; PERFORM SIMULATION
C ISW=i IMPLI ES SOFT LIMIT E

R

70 Do	 :LOO	 :I:	 :I. YNI:i
1

A = S(.1I; T ( X (.I. Y .I.) ijt *2'}'X (.I. Y 2) +1`* 2 )

PHI:=ATAN.'.(X(:IY 	 .'.)YX(:IY1.))
x 90 A is 1==A/ 5

A0::FI.CAME'Y:ISW)
DPI' .I1. -F2 (A Y .I SW )

jj X (:I: Y 1) ::::A0*CO 9 (PI••II+DPH:I: )

iF

'f	 r

ij	 G

r	 ^ 73
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X(Iv2)=AO*SINCPHIfDPH%)

100 CONTINUE
^ ISO RETURN

[ND
REAL FUNCTION F1CAvISW)

C IDEAL LIMITER
DATA BI / ^ 319381530/,	 B2/-,356563782/
DATA B3/1,781477937/,B4/-1^821255978/,B5/1,330274429/
DATA P/+2316419/01/3^14159265359/
COMMON S,SP` JF(%SW^EQ~O)	 GO TO 50

"  Z=SP*E%P(~(A**2)/2^O)
~	 ^ T1=1^0/(1^OfP*A)

' T2=T1**2
T3=T2*T1

^ T4=T3*T1
!̀	 ^ T5=T4*T1

F=Z*(B1*T1fT2*B2fB3*T3fB4*T4fB5*T5)
( F1=2*(^5-F)
i^	 »
[ ^ RETURN
| 	 50 FI=1^O
^ RETURN

^ END«
^ FUNCTION F2(A,ISW)

IF(ISW ^ EQ,I)	 GO TO 50

^ F2=-(3^0/57^3)*(2O*ALOG1U(A))
^ RETURN

50 F2=O^0
RETURN

l END
|	 *

`

^	 .
:
/
'
^

^

j^^	 ^

.̂^

«
|[ ^/
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aUI:ROUT'INE» D1:0DK((1yARy(IIvNl:ivi•°NAME:)
C
C	 THIS SUBROUTINE S:Ctfl.Jl..(11"I:S A VARIABLE BANDW:f DT H Y 4—POLE
(11 	 CI• EBYCI° EV LOW PASS FILTER.  (;al.lI: ROUTINE: D I GF":I L DOES THE
C	 ACTUAL FILTERING), (1 :::: 'T:I ME: SERIES DATA Y ND m* OF DATA P'O;I:NT'U r
(a	 1=NAMfw=1- IL'I'ER COEFFICIENT FILENAME
C

BYTE: ANS Y YEA Y NAMIE (15 )
LOGICAL FIRST
DIMENSION A(Nl:iv2) YCR(OYS) vCI (SYS) YAR(ND) YAI(NI:i)
xi(-1TA YEA /'Y'/
WRITE (50) A

(J

C	 ELECT FILTER BANDWIDTH
Cl

WRITE (0200)
:200	 FORMAT ('OFILE	 DESCRIPTION'/

&' OTECT:I	 C:FII: BYCHE:V v 4 — P'OI.•.E v 0.5 DB RIP'P'LE r (= CO=I' /
& •TEST2	 CHE BYCHEV v 4--POi. E v 0. a I: B RIPP LE Y r= CD=, /

• &' OINP'UT FILTERER COE;F IC.I.0 NT FILENAME'))

C	 r,EAD FILARR COi„'FF I;CIE:NTS FROM FILE:
C

CALL CIITSTR (5 v P'NAME v 1.4 v J:IIRR )
CALL. ASSIGN (1.0 v P'NAME; v 1 4 v ' RD0' )
I;I::AB(:IOY208) P'COrF:iivRIPYNPvFST'P'PH T'PYN ((CR(,.JYI)v,.1=IPB)yl=IPN)

208	 FORMAT (/3(28XYG13.6/) v'.:8X y l3/v.2(2BXvt:l3,6/) r;3;3Xv12y//v

&(2Xv8(:2XvG13.6)) )
CALL. CLOSE: (:I0 )
DO 20 X1031:3
DO 10 I=lvN

CI(Jyl)=C:h(Jvl)
10	 CONTINUE
20	 CONTINUE.
Cl
0	 PERFORM FILTERING VIA SUBROUTINE DIG IL, DATA IS PASSED
(d'	THROUGH FILTERR TW:I:C:E TO OBTAIN :I.N.I.TIAL. CONDITION K
(J

30	 CALL D.T.(:7FIL(2vCRYNl:iYARYAR)
CALL DIGFIL.(2vClyNDYAIYAI)
IF (FIRST . EQ. ,FALSE 0 GO T(7 40

REWIND 50
READ (50) n
GO TO ;30

10	 REWINEl ;i0
RETURN
END
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