General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
(NASA-CR-170163) TRELLIS PHASE CODES FORCOMMUNACATIOAS Final Report, 10 Apr. 1979 -22 Feb. 1981 (Virginia Univ.) 79 p UnclasHC A05/mF AO1
CSCL 17B G3/32 15260

Final Report
NAS5-25634

> TRELLIS PHASE CODES FOR POWER/BANDWIDTH EFFICIENT SATELLITE CONMUNICATIONS
> Submitted to:
> Nacional Aeronautics and Space Administration
> Lewis Research Center
> Cleveland, Ohio 44135

Submitted by:
S. G. Wilson Principal Investigator
J. H. Highfill Senior Scientist

C-D Hsu
Research Assistant
R. Harkness Research Assistant

Report No. UVA/525634/EE81/101
April 1981

COMMUNICATIONS SYSTEMS LABORATORY dEPARTMENT OF ELECTRICAL ENGINEERING SCHOOL OF ENGINEERING AND APPLIED SCIENCES UNIVERSITY OF VIRGINIA

Final Report
NAS5-25634
TRELLIS PHASE CODES FOR POWER/BANDWIDTH EFFICIENT SF.TELLITE COMMUNICATIONS

Submitted to:
National Aeronautics and Space Administration
Lewis Research Center Cleveland, Ohio 44135

Submitteci by:
S. G. Wilson

Principal Investigator
J. H. Highfill

Senior Scientist
C-D Hsu

Research Assistant
R. Harkness

Research Assistant

Department of Electrical Engineering
RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
SCHOOL OF ENGINEERING AND APPLIED SCIENCE
UNIVERSITY OF VIRGINIA
CHARLOTTESVILLE, VIRGINIA

Report No. UVA/525634/EE81/101
Copy No. 60

1. Report No.	2. Government Accession No.		ent's Catalog No.
4. Title and Subtitle Trellis Phase Codes for Power/Bandividth Efficient Satellite Communications			5. Report Date April 1981 6. Performing Organization Code NAS 5-25634
7. Author(s) S. G. Wilson, J. H. Highfill			8. Performing Organization Repart No. UVA/525634/EE81/101
9. Performing Organization Name and Address Communications Systems Laboratory School of Engineering and Applied Science University of Virginia, Thornton Hall Charlottesville, VA 22901			11. Coner et or Grant No.
12. Sponsoring Agency Name and Address NASA Lewis Research Center 21000 Brookpark Road Cleveland, OH 44135			14. Sponsoring Agency Code
15. Supplementary Notes			
16. Abstract This report summarizes work performed in support of improved power and spectrum utilization on digital satellite channels. Specific attention is given to the class of signalling schemes known as continuous phase modulation (CPM). The specific work described in this report addresses (1) analytical bounds on error probability for multi-h phase codes, (2) power and bandwidth characterization of 4-ary multi-h codes, and (3) initial results of channel simulation to assess the impact of band-limiting filters and nonlinear amplifiers on CPM performance.			
17. Kuy Words (Suggested by Author(s)) modulation and coding satellite communication		18. Distribution Stutement	
19 Seturity Classif. (of this report) Unclassified	20. Security Classit (oot this poge) Unclassified	$\begin{aligned} & \text { 21. No. of Piges } \\ & 79 \end{aligned}$	22. Price

TABLE OF CON'TENTS
Page
1.0 INTRODUCTION 1
2.0 ERROR BOUNDS FOR MUXIII-H PHASE GODES 2
I. INTRODUCIION 2
II. BACKGROUND 3
III. DEVLLOPMENT OC ERROR BOUNDS, UNLIMITED PATH MEMORY 8
IV. UPPER BOUND FOR FINITE MEMORY 18
V. NUMERICAL EXAMPLES 22
REFERENGES 27
3.0 4-ARY MULTI-H CODLS 28
REPERLNCES 37
4.0 CHANNEL SIMULATION 38
4.1 SMMUAATYON RESUL'TS 41
4.2 SOMTWARE DESGRIPIION 47
REPERENCLS 57
APPENDIX A 58

1.0 INTRODUCTION

In this final report on "Trellis Phase Codes for Power/Bandwidth Efficient Satellite Communication," (NAS5-25634) we summarize work performed since the last report of July 1980. Since that time we have continued our study of multi-h and partial response FM digital modulations, and have emphasized three special aspects:

1. analytical error bounds for multi-h phase codes
2. a study of 4-ary multi-h codes
3. channel simulation fur partial-response and multi-h codes to assess the effects of bandlimiting and nonlinear amplification. These are discussed in detail in following chapters of the report.

Additional work performed under the contract has been described in two pervious semi-annual reports to NASA/Lewis Research Center, published in November 1979 and July 1980.

2.0 ERROR BOUNDS FOR MULTI-H PHASE CODES

This section is a revision of a manuscript accepted for publication in the IEEE Transaction on Information Theory. Numbering of equations and references is internally consistent.

I. INTRODUCTION

Multi-h phase codes, described in detail by Anderson and Traylor [1], and earlier conceived by Miyakawa, et al. [2], represent a class of constant envelope signal designs providing attractive gains in the power/bandwidth tradeoff, relative to MSK or QPSK. Time-variation of the transmitter frequency deviation parameter among a small set of rational numbers provides delayed remergers in the phase trellis. This in turn provides increased minimum distance between signals which may be exploited by a maximum likelihood sequence estimator to enhance detection efficiency. Analysis thus far of these signals has concentrated on minimum distance to yield asymptotic behavior, and some simulation results are available, $[3,4]$.

These signals may be represented in terms of a finite-state trellis, though a time-varying one due to the cyclical nature of the modulator deviation parameter. In order to determine bounds on error probability, we extend the union bound/transfer function approach earlier used for linear convolutional codes [5] to the multi-h phase code case. In closely-related work, Aulin [6] has developed similar bounds for the class of partial-response FM codes with fixed modulator deviation. As with earlier applications, the principal difficulty is in formulating the state diagram and the necessary branch gains. Once this is accomplished, numerical evaluation is straightforward.

Lower bounds on receiver performance are more easily obtained in terms of a single (or few) neighboring paths, and it will be seen that the two bounds are close for performance levels of typical interest.

The paper is organized as follows. Section II provides a brief review of the multi-h signal structure, and its state-space description. Section III develops the upper and lower bounds for the case of unlimited path memory, incorporating the concept of difference-state trellises and the associated transfer functions. The effects of finite decoder path memory are addressed in Section IV. The paper concludes with several illustrative examples comparing the analytical bounds with simulation data.

II. BACKGROUND

We assume the transmitted signal is of the constant-envelope form

$$
\begin{equation*}
s(t)=(2 P)^{\frac{1}{2}} \cos \left(\omega_{c} t+\theta_{0}+\phi(t, \bar{a})\right) \tag{1}
\end{equation*}
$$

where P is the power of the symbol, θ_{0} is an arbitrary phase angle, and $\phi(t, \bar{a})$ is the (causal) phase modulation induced by a semi-infinite sequence

$$
\bar{a}=\left(a_{1}, a_{2}, \ldots a_{n} \ldots\right)
$$

The symbols a_{n} are selected independently each T seconds with equiprobability from the set $\{-(M-1), \ldots .,-3,-1,1,3, \ldots .(M-1)\}$ so that the signalling is M -ary.

Over the $\mathrm{n}^{\text {th }}$ signalling interval, $(\mathrm{n}-1) \mathrm{T} \leq \mathrm{t} \leq \mathrm{nT}$, the phase term in multi-h coding is a continuous waveform given by

ORIGNAL PAGE IS OF POOR QUALITY

$$
\begin{equation*}
\phi(t, \bar{a})=\pi \sum_{j=1}^{n-1} a_{j} h_{j}+\pi \sum_{(n-1) T}^{t} a_{n} h_{n} g(\tau-(n-1) T) d \tau \tag{2}
\end{equation*}
$$

The first term in (2) gives the accumulated phase due to symbols through a_{n-1}, while the second term provides the time-varying phase increment over the $n^{\text {th }}$ interval. Also in (2) we have defined $g(\tau)$ to be a frequency pulse for spectrum-shaping purposes. We assume that $g(\tau)$ is non-zero for $0 \leq \tau \leq T$, and that

$$
\begin{equation*}
\int_{0}^{T} g(\tau) d \tau=1 \tag{3}
\end{equation*}
$$

Under this normalization h_{n} plays the role of a modulation index, and h_{n} / T is proportional to the average frequency deviation over the symbol interval. We remark this description is more general than that of [1], in that M-ary modulation, as well as nonlinear phase trajectories, are allowed.

In standard digital FM transmission, h_{n} is some constant h. For MSK designs, $\mathrm{h}=1 / 2$, and for binary CPFSK, $\mathrm{h}=0.715$ maximizes the detection efficiency. However, in multi-h coding, h_{n} is cyclically chosen from a set H_{k} of K rational numbers:

$$
\begin{equation*}
H_{K}=\left\{\frac{p_{1}}{q}, \frac{p_{2}}{q}, \ldots \frac{p_{K}}{q}\right\} \triangleq\left\{h^{(1)}, h^{(2)}, \ldots h^{(K)}\right\} \tag{4}
\end{equation*}
$$

That is

$$
h_{1}=h^{(1)}, h_{2}=h^{(2)}, h_{K}=h^{(K)}
$$

and thereafter

$$
h_{n+j K}=h_{n}
$$

The set of possible phase trajectories associated with data sequen-
ces of length n is a phase tree of M^{n} trajectories. By virtue of the rational-index assumption, it will be seen that the number of distinct phases, modulo - 2π, attained at the end of symbol intervals is exactly q. (A complication is that there may be a different q values for differ" ent times, but this does not influence our development). Thus, the tree collapses to a phase trellis, describing the allowable phase transitions, and the allowable signal trajectories.

By defining the signal state at time n as

$$
\begin{equation*}
S_{n}=\pi \sum_{j=1}^{n-1} h_{j} a_{j}, \bmod 2 \pi \tag{5}
\end{equation*}
$$

we obtain a finite-state description of the signal, whereby the state evolves among q states (phases) according to

$$
\begin{equation*}
S_{n+1}=S_{n}+\pi h_{n} a_{n}, \bmod 2 \pi \tag{6}
\end{equation*}
$$

This description is essential for maximum likelihood decoding via the Viterbi algorithm.

As a unifying example throughout, we shall consider a simple binary code defined by $\mathrm{H}_{2}=\{2 / 4,3 / 4\}$. The state trellis for this example is shown in Figure 1, where it may be seen that the allowable state transitions are time-varying, depending on which deviation is currently in effect. The trellis shows state transitions, and is not meant to indicate actual phase variation, although in the usual case the phase segments are piece-wise linear. The trellis is structurally very regular, its appearance complicated only by the mod 2π phase definition.

For this example, it may be seen that two data sequences which differ in the first position produce state sequences which are unmerged OF POOR QUALTM

Figure 1. State Trellis for $\{2 / 4,3 / 4\}$ Code
for at least $K+1=3$ bits in the trellis. Generally speaking long remerger lengths are desirable for energy exficiency, and it may be shown that there exist sets H_{K} which achieve an unmerged span of $K+1$ levels provided $q \geq M^{K}$, [1], [4].

Assuming coherent reception of the multi-h signal in white Gaussian noise, the optimal sequence detector is comprised of a bank of correlators coupled with a q-state Viterbi algorithm decoder. The correlators in effect generate branch metrics for the trellis search. The receiver locates the data sequence producing the largest waveform correlation, ignoring for the moment questions of quantization and path memory. An alternate view is that the receiver does minimum distance decoding, with distance measured in the L_{2} norm. Distance between waveforms is key concept in the development, and is given by

$$
\begin{equation*}
\mathrm{d}_{12}{ }_{\mathrm{N}}^{2}=\frac{1}{2 \mathrm{E}} \int_{0}^{\mathrm{NT}}\left(\mathrm{~s}_{1}(\mathrm{t})-\mathrm{s}_{2}(\mathrm{t})\right)^{2} \mathrm{dt} \tag{7}
\end{equation*}
$$

The cormalization is selected so that the probability of error in a twosignal test is

$$
\begin{equation*}
P_{e}=Q\left(\frac{d_{12}^{2} E}{N_{0}}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

where $E=P T$ is the energy per symbol, and N_{o} is the one-sided noise spectral density. With this definition, antipodal signals of length T have a normalized distance of 2 .

Quantities of special importance are the minimum distance over an interval of length N, defined as

$$
\begin{equation*}
d_{\operatorname{minin}_{N}}^{2}=\min _{i} \min _{j} d_{i j_{N}}^{2} \tag{9}
\end{equation*}
$$

Chusumu. .
 OFPOOR On:

and its limiting value in $N, d_{\text {free }}^{2}$. These will determine the detection efficiency at large E / N_{0}.
III. DEVELOPMENT OF ERROR BOUNDS, UNLIMITED PATH MEMORY

In this section we proceed to develop upper and lower bounds on the probability that a decoding error event begins at some level n, denoted P_{e}, and on the probability of symbol error, denoted P_{s}. The receiver memory is assumed arbitrarily large. The development utilizes standard transfer function bounding, e.g., [5], modified to incorporate difference state concepts [6] and the time-varying nature of the trellis.

An error event wegins at time n if the decoder selects sequence \bar{b} rather than the transmitted sequence \bar{a}, where \bar{a} and \bar{b} first differ at time n . The probability that two sequences are confused depends only on their phase difference trajectory (as well as E / N_{0}). Since phase is in turn proportional to the data sequence, we need only consider possible data difference sequences, rather than consider all possible sequence pairs ($\overline{\mathrm{a}}, \overline{\mathrm{b}}$). This fact has been utilized by Aulin [6] for the case of partial-response FM trellis codes.

For multi-h codes, the difference-state for a pair of sequences is given by the accurnulated phase difference, mod 2π. That is

$$
\begin{equation*}
\Delta_{n}=\sum_{j=1}^{n-1} \pi h_{j} \gamma_{j} \quad, \bmod -2 \pi \tag{10}
\end{equation*}
$$

where $\gamma_{j}=a_{j}-b_{j}$. The difference-state trellis shows the possible evolution of difference-state among the q possible valuss for (10). Since γ_{j} is in a set of size $2 \mathrm{M}-1$, there are $2 \mathrm{M}-1$ branches entering and leaving each node of the difference-state trellis. Figure 2 illustrates the difference-state trellis for the $\{2 / 4,3 / 4\}$ binary code described earlier.

Figure 2. Difference-State Trellis for $\{2 / 4,3 / 4\}$ Code

ORIGINAL PRGE IS
 OF POOR QUALITY

Error free decoding corregronds to residence in the $\Delta_{n}=0$ state, i.e. the selested path agrees with the transmitted path. An error event begins at time n if the selected path splits from the zero differ-ence-state at the $n{ }^{\text {th }}$ level. The probability of this event, $P_{e^{\prime}}$ is upper bounded by the sum of probabilities that the decoder selects a specific difference sequence which leaves the zero difference-state at time n and remerges later in the trellis.

Actually this bound is unduly pessimistic since transmitted sequences are not in one-to-one correspendence with difference sequences. For example consider $M=2$. The allowed values for γ_{n} are $2,0,-2$. $\gamma_{n}=2$ can be formed only by $\left(a_{n}, b_{n}\right)=(1,-1)$, whereas $\gamma_{n}=0$ can correspond to $\left(a_{n}, b_{n}\right)=(1,1)$ or $(-1,-1)$. To properly average with respect to transmitted sequences, we must give lesser weight to the influence of $\gamma_{n}= \pm 2$ transitions. Similar effects happen with larger M, and Aulin [6] has shown a multiplying factor

$$
\begin{equation*}
c=\prod_{n}\left[M-\left|\gamma_{n}\right| / 2\right] / M \tag{11}
\end{equation*}
$$

must be applied to the probability of each difference sequence to provide the proper averaging.

Assuming for the present that deviation $h^{(1)}$ is effect at time n, we can now write the conditional event error probability as

$$
\begin{equation*}
\left.P_{e}\right|_{1}<\sum_{i=1}^{\infty} c_{i} Q\left(\left(\frac{1_{i}{ }^{2} E}{N_{o}}\right)^{1 / 2}\right) \tag{12}
\end{equation*}
$$

where i is an index on the set of unmerged difference sequences, ${ }_{i} \mathrm{~d}_{\mathrm{i}}{ }^{2}$ is the distance corresponding to the $\mathrm{i}^{\text {th }}$ sequence conditioned by the fact that $h_{n}=h^{(1)}$, and c_{i} is a weighting factor obtained via (11).

Signal flow graphs and their transfer functions may be used to evaluate (12) numerically. The difference-state transition diagram is viewed as a flow graph with zero state split into input and output nodes. Paths are labelled with a gain of the form $C D{ }^{X_{I}} Y_{L}$ where c is given by $[M-|\gamma| / 2] / M, x$ is the distance accumulated in undergoing a given transition, and y is an error indicator $(y=1$ if $\gamma \neq 0$ and $y=0$ if $\gamma=0$).

In the multi-h case, the state transition diagram is time-varying. Whereas a single transition matrix suffices in the usual case, K state transition diagrams (and matrices) are needed here. Returning to our example, we show the two split difference-state diagrams for the \{2/4, $3 / 4\}$ code in Figure 3. In tracing paths, one must alternate between diaurams.

To handle the time-varying case, we imagine an ensemble of transmitter/receiver pairs for which the deviation index at time $n=1$ is randomly selected among K values equiprobably. Thereafter each system runs according to the usual multi-h format. One then sees that the error probability at any time n is an average of error probabilities conditioned on a specific choice of deviations,

$$
\begin{equation*}
P_{e}=\left.\frac{1}{K} \sum_{j=1}^{K} P_{e}\right|_{j} \tag{13}
\end{equation*}
$$

and the same holds for symbol probabilities. More practically, one may view this in terms of a time average for a single realization.

Next, we upper bound the error probability $\left.\mathrm{P}_{\mathrm{e}}\right|_{1}$, noting the other $P_{e} \mid j$ follow directly. We define, T_{1} to be the matrix of path gains between difference states when deviation $h^{(1)}$ is in effect, T_{2} to be the

Figure 3. Split Difference-State Transition Diagram, Binary $\{2 / 4,3 / 4\}$ Linear Phase Code

ORIGINAL PACE IS

 OF POOR QUALITY$$
\begin{aligned}
& \mathrm{T}_{1}=\left[\begin{array}{ccccc}
0 & 0 & D I L & 0 & 0 \\
0 & D L & 0 & \frac{1}{2} \operatorname{ILL}\left(D^{0.36}+D^{1.64}\right) & 0 \\
0 & 0 & D^{2} L & 0 & D I L \\
0 & \frac{1}{2} I L\left(D^{0.36}+D^{1.64}\right) & 0 & D L & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Figure 3 (continued)
matrix corresponding to $h^{(2)}$, and so on. Each matrix will be square with dimension $q+1$, arising from q difference states plus one for splitting of the zero-difference state. We index the difference states 1 , $2, \ldots, q$, and let 1 and $q+1$ be the indices for the split zero state. The $j k^{\text {th }}$ element of T_{1} represents the path gain from state j to state k, and will be a polynomial in D, I and L. Figure 3 itemizes these matrices for the example code.

In finding the transfer function of the graph, we note that T_{1} represents the possible actions after a single step, $\mathrm{T}_{1} \mathrm{~T}_{2}$ represents the actions after two steps, etc. After any prescribed number of steps, the upper right-hand corner element of the sum matrix

$$
\begin{equation*}
M_{1} \triangleq T_{1}+T_{1} T_{2}+T_{1} T_{2} T_{3}+\ldots \tag{14}
\end{equation*}
$$

provides the path enumeration we seek, namely the set of possible path distances, their lengths, and respective number of symbol errors.

In the case of unlimited memory, we have an infinite sum of matrix products in (14). Noting the periodic nature of the h_{n}, (14) may be regrouped as

$$
\begin{align*}
M_{1} & =\left[\sum_{j=0}^{\infty}\left(T_{1} T_{2} \ldots T_{K}\right)^{j}\right]\left[T_{1}+T_{1} T_{2}+\ldots T_{1} T_{2} \ldots T_{K}\right] \\
& =\left[1-T_{1} T_{2} \ldots T_{K}\right]^{-1}\left[T_{1}+T_{1} T_{2}+\ldots T_{1} T_{2} \ldots T_{K}\right] \tag{15}
\end{align*}
$$

We call the upper-right corner element of M_{1} the transfer function of the graph, when $h^{(1)}$ is the initial deviation, and denote it $G_{1}(D, I, L)$. It may be written in general as

$$
\begin{equation*}
G_{1}(D, I, L)=\sum_{i=1}^{\infty} c_{i} D_{i}^{d} \quad I^{v i} L^{\ell i} \tag{16}
\end{equation*}
$$

ORIGINAL PAGE IS
 OF POOR QUALITY

where c_{i} is a positive constant, d_{i}^{2} is a distance associated with an error event of length ℓ_{i}, v_{i} is the corresponding number of symbol errors. There may be many error events of a given length having differing d_{i}^{2} and v_{i}.

Recalling the upper bound to event error probability of (12) we see that if the series expansion (16) could be obtained, the bound is obtained. Such is not possible except for simple examples, so we seek an efficient numerical procedure.

By the inequality [5]

$$
\begin{equation*}
Q\left((a+b)^{1 / 2}\right)<Q\left(a^{1 / 2}\right) e^{-b / 2} \quad a, b>0 \tag{17}
\end{equation*}
$$

we may write (12) as

$$
\begin{equation*}
\left.\left.P_{e}\right|_{1}<Q\left(\left(\frac{d^{d_{\text {min }}}}{N_{0}}\right)\right)^{1 / 2}\right) \exp \left[\frac{d^{2} \text { min } E}{2 N_{0}}\right] \sum_{i=1}^{\infty} c_{i} \exp \left(-\frac{d_{i}{ }^{2} E}{2 N_{o}}\right) \tag{18}
\end{equation*}
$$

But the summation in (18) is precisely $G_{1}(D, I, L)$ with $D=e^{-E / 2 N_{0}}, I=$ $1, L=1$. Thus, conditioned on $h^{(1)}$ being $n^{\text {th }}$ deviation, we have

$$
\begin{equation*}
\left.P_{e}\right|_{1}<\left.Q\left(\left(\frac{d_{\text {min }}^{2}}{N_{0}}\right)^{1 / 2}\right) \exp \left(\frac{d_{\text {min }}^{2} E}{2 N_{0}}\right) G_{1}(D, I, L)\right|_{\substack{D=e^{-E / 2 N_{0}} \\ I=L=1}} \tag{19}
\end{equation*}
$$

$$
\left\langle G_{1}(D, I, L)\right| \begin{aligned}
& D=e^{-E / 2 N_{0}} \\
& I=L=1
\end{aligned} /\left(\frac{2 \pi_{1} d_{\text {min }}^{2}}{N_{0}}\right)^{1 / 2}
$$

The latter follows by the inequality

$$
\begin{equation*}
Q(x)<e^{-x^{2 / 2} /(2 \pi)^{1 / 2}} x \tag{20}
\end{equation*}
$$

which weakens the bound slightly for small signal-to-noise ratio.

OF FOOR QUALITY

Furthermore, the conditional upper bound on symbol error probability is

$$
\begin{equation*}
\left.P_{s}\right|_{i}<\sum_{i} c_{i} v_{i} Q\left(\left(\frac{d_{i}^{2} E}{N_{0}}\right)^{1 / 2}\right) \tag{21}
\end{equation*}
$$

where i is the number of symbol errors associated with the $i^{\text {th }}$ error event. Using steps as above, this becomes

$$
\begin{equation*}
\left.P_{s}\right|_{1}<\left.\frac{\partial G_{1}(D, I, L)}{\partial I}\right|_{\substack{D=e^{-E / 2 N_{0}} \\ I=L=1}} \quad\left(2 \pi \frac{1 d_{\min }^{2} E}{N_{0}}\right)^{1 / 2} \tag{22}
\end{equation*}
$$

The desired derivative may be numerically evaluated using finite differencés.

To complete the analysis we simply must average these bounds with respect to the K possible values for $h^{(i)}$, as in (13), and the final upper bounds become

$$
\begin{array}{ll}
P_{e}<\frac{1}{K} \sum_{i=1}^{K}\left(2 \pi \frac{i^{d_{\text {min }}^{2} E}}{N_{0}}\right)^{-1 / 2} & G_{i}(D, I, L) \left\lvert\, \begin{array}{l}
D=e^{-E / 2 N_{0}} \\
I=L=1
\end{array}\right. \\
P_{S}<\frac{1}{K} \sum_{i}\left(2 \pi \frac{i d_{\text {min }} E}{N_{0}}\right)^{-1 / 2} & \left.\frac{\partial G_{i}(D, I, L)}{\partial I}\right|_{l} ^{D=e^{-E / 2 N_{0}}} \begin{array}{l}
I=L=1
\end{array} \tag{23b}
\end{array}
$$

Lower Bounds

Although upper bounds on performance are generally of most interest, and in fact it is known that the upper bounds derived here are asymptotically tight for large E / N_{o}, lower bounds may be of interest and are easily calculated. One principal use is in assessing the region for which the upper bound is tight.

A lower bound on error event probability is provided by computing the probability that any error sequence diverging at level n has higher metric (correlation) than the transmitted sequence, and we can make the lower bound tightest by choosing that neighbor sequence having the minimum distance. As before, there are K equiprobable selections for the $n^{\text {th }}$ deviation, and a simple averaging of conditional lower bounds provides the desired lower bound. The minimum distance depends on the initial deviation. This minimum distance may generally be found by listing short remerger events of length L defined by

$$
\begin{equation*}
\sum_{n=1}^{L} h_{n} \gamma_{n}=0, \bmod 2 \pi \tag{24}
\end{equation*}
$$

and' evaluating the distance from the difference state transition diagrams. In complicated cases, $\mathrm{d}_{\min }^{2}$ may be found using dynamic programming on the difference-state trellis. (This is the same $d_{\text {min }}$ needed for the upper bound).

These lower bounds to error event and symbol error probabilities become

$$
\begin{align*}
& P_{e}>\frac{1}{K} \sum_{i=1}^{K} c_{i} Q\left(\left(\frac{i^{d_{\min }^{2}} E}{N_{o}}\right)^{1 / 2}\right) \tag{25a}\\
& P_{s}>\frac{1}{K} \sum_{i=1}^{K} v_{i} c_{i} Q\left(\left(\frac{i^{d_{\min }^{2}} E}{N_{0}}\right) 1 / 2\right) \tag{25b}
\end{align*}
$$

where v_{i} is the number of symbol errors on the various minimum distance paths. The bounds of (25) use only the minimum distance event for each possible starting deviation, and one finds the bound is weak at low signal-to-noise ratios, particularly so when several error events have comparable distances.

IV. UPPER BOUND FOR FINITE MEMORY

The infinite path memory assumption of the previous section is of course not realizable in practice, although one expects that if the decoder delay is suitably large, then ideal performance is closely approached. Since we would like to operate with minimal delay and memory, questions arise about the effect of a given delay on performance.

We assume the decoder operates as follows. The Viterbi algorithm performs trellis computations as usual, but maintains survivor paths in memory for only N symbols. Thus at level $\mathrm{n}+\mathrm{N}$ of the trellis, the path with the currently best metric is located, and the oldest symbol on its path map, corresponding to \hat{a}_{n} is released by the decoder. Trellis pruning is not performed if survivor paths disagree in the oldest position. Relative to the case of pruning of such paths, P_{s} actually is smaller, and the analysis is simplified.

We classify error events into two classes: those made by an ideal ML decoder operating with infinite memory; and those due to truncation wherein an unmerged path has highest metric at the current time, and the oldest symbol in its history is released by the decoder. Following Hemmati and Costello [7], we sum the error probabilities for each type as an upper bound on overall error probability. This allows some double-counting of error events.

Consider again the difference-state trellis, where the all-zero sequence corresponds to error-free operation. An error event due to truncation can occur at time n whenever a path splits from the zero difference-state at or before time n and remains unmerged at time $\mathrm{n}+$ N. With the aid of Figure 4, we illustrate error events of both types.

OF POOR QUALITY

all-zero difference sequence

Figure 4. Schematic Illustrations of Error Event Types for Decoding with Delay N Symbols.

OF POOR QUALITY

Events 1 and 2 are of the type which could produce symbol errors at time n in ML decoding, and were included in the analysis of section III. Event 3 diverges at time n and remains unmerged at time $n+N$, so it leads to a truncation error at time n. Finally, path 4 is a sequence which diverged earlier, remains unmerged at $n+N$, and may produce a symbol error at time n.

We assume for notational convenience that the decoder truncation depth N is a multiple of the cycle length K , i.e. $\mathrm{N}=\mathrm{rK}$. Since multi-h codes have apparently little theoretical or practical benefit for $K>4$, this represents no reaì instrumentation constraint.

As before we analyze performance for a specific deviation condition, then average with respect to the K such choices. We first let $h^{(1)}$ be in effect at the time of interest, n. We wish to enumerate all difference sequences which split from the zern difference-state at time n or eariier, and which remain unmerged at time $n+N$. Consider the matrix $\left(T_{1} T_{2} . \cdot \Gamma_{K}\right)^{r}$. This enumerates paths of length $N=r K$, and the elements in the top row, except the upper-right corner element, constitute the unmerged paths which split from the zero state at time n. Similarly, $T_{K}\left(T_{1} T_{2} . . T_{K}\right)^{r}$ deschibes paths of length $N+1$ diverging at time $n-1$. Thus we sum matrix products of order N or larger, and define this sum to be \hat{M}_{1} :

$$
\begin{align*}
\tilde{\mathrm{M}}_{1} & =\left[\mathrm{I}+\mathrm{T}_{\mathrm{K}}+\mathrm{T}_{\mathrm{K}-1} \mathrm{~T}_{\mathrm{K}}+\ldots+\mathrm{T}_{1} \mathrm{~T}_{2} \ldots \mathrm{~T}_{\mathrm{K}}+\ldots\right]\left[\mathrm{T}_{1} \mathrm{~T}_{2} . . \mathrm{T}_{\mathrm{K}}\right]^{\mathrm{r}} \\
& =\left[\mathrm{I}+\mathrm{T}_{\mathrm{K}}+\mathrm{T}_{\mathrm{K}-1} \mathrm{~T}_{\mathrm{K}}+\ldots+\mathrm{T}_{2} \mathrm{~T}_{3} . . \mathrm{T}_{\mathrm{K}}\right]\left[\mathrm{I}-\mathrm{T}_{1} \mathrm{~T}_{2} . . \mathrm{T}_{\mathrm{K}}\right]^{-1}\left[\mathrm{~T}_{1} \mathrm{~T}_{2} \ldots \mathrm{~T}_{\mathrm{K}}\right]^{\mathrm{r}} \tag{26}
\end{align*}
$$

 OF POOR QUALITY

Finally we let $\tilde{G}_{1}(D, I, L)$ be the polynomial sum of all top-row entries in \hat{M}_{1}, excepting the corner element, and term this the transfer function for truncation error. Following the development of Section III, we have that, conditioned upon $h^{(1)}$ being in effect at time n, the symbol error probability due to truncation is upper-bounded as
where $1 d_{\min }^{2}$ refers to the minimum distance among all unmerged difference sequences of length N or larger, with $h^{(1)}$ in effect at time n. Note the above is a symbol error probability and does not require differentiation as in the infinite memory case. This reflects the fact that only a single error is released when a truncation error event occurs.

It remains to formulate the bound when the other $\mathrm{K}-1$ deviations are in effect at time n. The matrices \tilde{M}_{2} through \tilde{M}_{K} are similar in form to that of (26), except the subscripts are cycled in straight-forward manner. Then similar bounds to that of (27) are found, each using a different $d_{\text {min }}^{2}$. Adding all such truncation probabilities and dividing by K provides an upper bound on symbol error probability due to truncation, $P_{S_{\text {trunc }}}$. As earlier argued the final upper-bound is obtained by combining the bound for infinte memory with $P_{S_{\text {trunc }}}$:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s}_{\text {total }}}<\mathrm{P}_{\mathrm{s}_{\mathrm{ML}}}+\mathrm{P}_{\mathrm{s}_{\text {trunc }}} \tag{23}
\end{equation*}
$$

where P_{S} is given by (25b).
ML
V. NUMERICAL EXAMPLES

The preceding development has been applied to the earlier example, as well as to two other codes: the binary $\{4 / 8,5 / 8,6 / 8\}$ code and a 4-ary $\{3 / 16,4 / 16\}$ code. The free distance calculations for these designs project an asymptotic energy efficiency relative to PSK or QPSK, of $1.4 \mathrm{~dB}, 2.8 \mathrm{~dB}$, and -0.8 dB respectively. The first two have spectra comparable to that of CPFSK with $h=5 / 8$, and the 99% bandwidth is approximately 1.67 times the bit rate. The 4 -ary code han a lesser bandwidth occupancy (the most rapid phase change is $3 \pi / 4$ radians per two bits, or that of binary signalling with $h=3 / 8$. Its 99% bandwidth is approximately 0.7 times the bit rate, [8].

Figure 5 illustrates the bounds for the $\{2 / 4,3 / 4\}$ code, for unlimited path memory and with $\mathrm{N}=2$ and $\mathrm{N}=4$. For unlimited memory, the upper and lower bounds closely bracket the true performance for typical levels of interest, say $P_{S}<10^{-3}$. Simulation results for unlimited memory actually lie close to the upper bound. All simulation results include at least 100 symbol errors.

The decision depth (the depth in the trellis beyond which all unmerged paths have distance exceeding $d_{\text {free }}$) is four for this code. Thus we expect $N=4$ should be quite adequate as a practical path memory length. Indeed the upper bound is only 0.2 dB displaced from the unlimited memory bound. Simulation results again confirm the validity of the bound. With $N=2, d_{\min }$ is appreciably less, and in fact the efficiency is worse than that of PSK. This case indicates the effect of a poor choice of N .
 OF POOR QUALITY

Figure 5. Upper Dounds and Lower Bounds to P_{S} for $\{2 / 4,3 / 4\}$ Code

Pigure 6 presents upper-bound results for the $K=3\{4 / 8,5 / 8$, $6 / 8 \mathrm{~J}$ code. The larger asymptotic coding gain is clearly revealed, and we also note this stronger code requires increased delay to realize its full potential. This is completely analogous to results for convolutional codes, where increasing constraint length necessitates larger decoder memory. The decision depth in this case is nine bits, and the upper bound for $N=8$ is asymptotically different than the unlimited memory bound.

Einally, results for a narrow-band 4-ary design are shown in Figure 7. The decision depth in this case is $N_{D}=9$ symbols. Again note that eight symbols of path memory is essentially adequate to achieve unlimited-memory performance. The asymptotic efficiency is 0.8 dB poorer than PSK/QPSK; however the spectrum is quite compact. 4-ary multi-h signalling appears to offer extra gain in the power/bandwidth/complexity trade-off, [9], [10], as is the case in other modulations such as CPFSK and partial-response FM.

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 6. Error Bounds for Binary $\{4 / 8,5 / 8,6 / 8\}$ Code

ORIGNa mala gy
OF POOR gualty

Figure 7. Error Bounds for 4-ary $\{3 / 76,4 / 16\}$ Code

REFERENCES

1. Anderson, J. B., and Taylor, D. P., "A New Class of Signal Space Codes," IEEE Transactions on Information Theory, pp. 703-712, November 1978.
2. Miyakawa, H., Harashima, H. and Tanaka, Y., "A New Digital Modulation Scheme - multi-mode CPFSK," Proceedings 3rd Int'l Conference on Digital Satellite Communications, Kyoto, Japan, 1975.
3. Anderson, J. B., "Simulated Error Performance of Multi-h Phase Codes," CRL Report 67, Communications Research Laboratory, McMaster University, Hamilton, Ontario; see also Int'l Communications Conference Record, June 1980.
4. Wilson, S. G., Highfill, J. H., Gaus, R., and Hsu, C-D., "Trellis Phase Codes for Improved Power and Bandwidth Efficiency in Satellite Communication," report to NASA/Lewis Research Center, contract NAS5-25634, July 1980.
5. Viterbi, A. J. and Omura, J., Principles of Digital Communication and Coding, McGraw-Hill, 1979.
6. Aulin, T., "Continuous Phase Modulation," Ph.D. dissertation, University of Lund, Lund, Sweden, 1979, see also National Telecommunications Conference Record, December 1980.
7. Hemmati, F. and Costello, D. J., "Truncation Error Probability in Viterbi Decoding," IEEE Transactions on Communications, pp. 530-532, May 1977.
8. Wilson, S. G. and Gaus, R., "Power Spectra of Multi-h Phase Codes," IEEE Transactions on Communications, pp. 250-256, March 1981.
9. Hsu, C-D., "Multi-h Phase Coding: Its Theory and Design," Ph.D. dissertation, University of Virginia, 1981.
10. Aulin, T. and Sundberg, C-E., "On the Minimum Euclidean Distance for a Class of Signal Space Codes," submitted to IEEE Transactions on Information Theory.

3.0 4-ARY MULTI-H CODES

By allowing non-binary signalling, we allow more freedom in the signal design and thus more flexibility in the power/bandwidth/complexity tradeoff. In more traditional designs, it is known that M-ary orthogonal signalling provides power savings over binary signalling, while M-ary PSK conserves in bandwidth. More recently, it has been found that non-binary partial response FM modulation affords substantial improvement in power-versus bandwidth performance, [1]. 4-ary and binary CPFSK are also known to be superior to binary CPFSK.

We have surveyed 4-ary multi-h phase codes with rectangular and raised-cosine frequency puise shaping, [2]. It happens that to have the full constraint length of $K+1$ symbols for a multi-h code with K deviations, that q, the common denominator of the rational deviation indexes must be greater or equal to M^{K}. This is also the number of states in a maximum likelihood decoder. Consequently complexity grows rather rapidly with M, and we chose to stop at 4-ary, $2-\mathrm{h}$ codes, where $q=16$.

Table 3.1 lists a selection of such codes having full constraint length, along with their free distance values. As for binary codes, the best codes are those with h's clustered near a common value, e.g. $\{3 / 16,4 / 16\}$. Figure 3.1 illustrates the performance graphically as a function of \bar{h}, the mean index. Note that for small \bar{h}, raised-cosine codes have slightly better distance (and slightly wider main lobe in the spectrum) and that a gain of about: 2 dB over 4-ary CPESK is typical. This corresponds to the typical gains shown for binary $2-\mathrm{h}$ codes over binary CPFSK.

Table 3.1 Free distance of 4-ary 2-h codes with constrainty length 3.

TYPE			MEAN INDEX	LINEAR PHASE CODES		R.C. FREQUENCY CODES	
				$\mathrm{d}_{\text {free }}^{2}$	$\begin{aligned} & \text { Decision } \\ & \text { Depth, } \mathrm{T}_{\mathrm{b}} \end{aligned}$	$\mathrm{d}_{\text {free }}^{2}$	$\begin{aligned} & \text { Decision } \\ & \text { Depth, } T_{b} \end{aligned}$
16	4	3	. 219	$\checkmark 1.688$	18	$\checkmark 2.103$	20
16	5	4	. 281	$\checkmark 2.789$	24	2.654	22
16	7	4	. 344	$\checkmark 3.454 *$	30	\checkmark 3.217*	20
17	5	3	. 235	1.776	22	2.008	20
18	8	7	. 417	$\checkmark 4.527 *$	34	3.249*	18
18	11	8	. 528	4.076	12	3.249	10
19	8	6	. 368	4.262	42	2.560*	28
20	4	3	. 175	1.105	18	1.387	20
20	6	5	. 275	2.774	34	3.095	36
20	8	5	. 325	3.399	30	\checkmark 3.549*	42
20	9	8	. 425	$\checkmark 4.798 *$	44	3.095	12
21	10	8	. 429	4.280^{*}	52	2.517*	32
22	7	6	. 295	3.226	46	2.499	34
24	5	4	. 187	1.323	26	1.633	30
24	6	5	. 229	1.998	36	2.419	42
24	7	6	. 271	2.774	46	$\checkmark 3.217^{*}$	53
25	6	5	. 220	1.853	36	2.249	42
25	10	7	. 340	3.656*	34	3.726*	40
26	5	4	. 173	1.136	26	1.406	30
27	8	7	. 278	2.962	60	3.249	62
28	8	7	. 268	2.780	62	3.285	72
28	11	9	. 357	4.197	88	2.424	52
28	12	11	. 411	4.646*	76	3.442*	40
29	6	5	. 190	1.404	36	1.715	42
29	13	12	. 431	4.838*	80	3.142*	12
30	9	8	. 283	3.118	78	3.095	64
30	13	12	. 117	4.877*	94	3.586*	22
31	6	5	. 177	1.238	36	1.515	44
32	8	7	. 234	2.190	62	2.612	74
32	10	9	. 297	3.423	96	2.654	40
32	20	19	. 609	4.739*	50	3.579*	36

* : codes with best free distance among codes with common q.
\checkmark : codes of interest (having good power/bandwidth/complexity trade-off).

Figure 3.1 Best free distance versus $\overline{\mathrm{h}}$. The codes are 4 -ary codes with linear phase and raised-cosine pulse shaping. The unconnected marks represent codes with wide-spread indices (the difference between the numerators of the indices is greater than one).

The spectral properties of 4 -ary 2 -h codes may be calculated numerically using the procedure described earlier. An example is shown as Figure 3.2 for the $\{4 / 16,5 / 16\}$ case. Hsu [2] has found a quick rule of thumb for spectral behavior based on the mean index $\overline{\mathrm{h}}$. Since the data values are $\{ \pm 1, \pm 3, \ldots \pm \mathrm{M}-1\}$ and each symbol conveys $\log M_{2}$ bits, we define an equivalent binary index as

$$
\begin{aligned}
\bar{h}_{b} & =\frac{1}{K} \frac{1}{M / 2} \sum_{j=1}^{K} \sum_{i=1}^{M / 2}(2 i-1) \frac{h_{j}}{\log _{2} M} \\
& =\left(\frac{M / 2}{\log _{2} M}\right) \bar{h}
\end{aligned}
$$

where $\overline{\mathrm{h}}$ is the mean index, averaged over the K possible values. M-ary codes having an equivalent $\overline{\mathrm{h}}_{\mathrm{b}}$ are found to have nearly equal spectral properties, i.e. 99% power bandwidth, etc. Since $(M / 2) / \log _{2} M$ $=1$ for $M=4$ and $M=2$, we infer binary and 4-ary codes with equal \bar{h} will have comparable bandwidth. This is illustrated in Figure 3.3, showing B_{99} and B_{90} are equal within $\pm 10 \%$ when codes are compared on the basis of $\overline{\bar{h}}_{b}$.

Table 3.2 summarizes bandwidth and distance statistics for a number of multi-h codes ranging from powfr efficient to bandwidth efficient designs.

In summarizing the M-ary multi-h situation, we show performance in the distance-bandwidth plane, Figure 3.4. 4-ary 2 -h designs show substantial gain over binary $2-\mathrm{h}$ designs, particularly in the small bandwidth region, say $\mathrm{B}_{99} \mathrm{~T}_{\mathrm{b}}<1$. Also, we observe the rather depressing result that 4 -ary single -h codes outperform binary 2 -h codes under a bandwidth constraint. Since complexity is probably no worse

Figure 3.2 Power spectral density for 4-ary multi-h linear phase codes with the same mean index.

Figure 3.3908 and 998 bandwidths versus equivalent binary mean index for various M-ary single index, linear phase codes. Also shown are some multi-h codes with comparable indices.

OF POOR QUALITY

Table 3.2 Bandwidth performance for multi-h codes with good power/banawidth/complexity trade-offs.

Figure 3.4 Best free distance versus 99 g bandwidth for various M-ary multi-h and single index codes. The codes are of linear phase transition.
for the 4-ary single-h design, it seems questionable whether binary 2-h codes, and even binary multi-h codes in general, should be studied further. We do note that 4-ary 2 -h codes outperform 8-ary CPFSK in the small bandwidth region, and that the 4 -ary $2-\mathrm{h}$ class thus seems a strong modulation candidate.

REFERENCES

1. Aulin, T., and Sundberg, C-E., "Continuous-Phase Modulation: Parts I and II," IEEE Transactions on Communication, March 1981.
2. Hsu, C-D., "Multi-h Phase Coding: Its Theory and Design," Ph.D. dissertation, University of Virginia, 1981.

4.0 CHANNEL SIMULATION

We have implemented a EORTRAN software simulation of a typical satellite channel for purposes of assessing various effects on performance which are induced by bandlimiting filters and/or saturating repeaters. Discrete-time simulation seems to be the expeditious approach as analytical results of sufficient generality appear formidable. The simulation package is essentially completed at this point, though no error probability production runs have been completed.

The system being addressed is shown in Figure 4.1. The software is highly-modular, so rearrangements of the functional blocks is possible; however the configuration of Figure 4.1 represents the situation with post-modulation filtering and nonlinear amplification (either at the ground station or in a satellite transponder), down-link noise being dominant, and general receiver flltering. Coherent: reception with maximum likelihood decoding is also assumed. In the absence of filtering and nonlinear distortion, performance is known for a variety of partial-response FM and multi-h codes through calculations of minimum distance and error bounds. As with other more classical schemes however, the effect of chamel degradation is an important engineering question. In particular it is felt. by some that these newer exotic designs are less tolerant of distortion than say QPSK or MSK.

One may wonder why filtering is considered, since one of the attributes of continuous phase modulation is improved spectral shaping, with the potential for avoiding the need for post-modulation filtering. It is however likely that, even so, some filtering will be performed for one of several reasons. First, equipment, with formerly-necessary

ORIGINAL PAGE G
OF POOR QUALITY
Figure 4.1 Simulation Block Diagram
channel filtering may still be in place and is to be used. Second, premodulation shaping alone is not able to attain spectral emission limits in high performance cases, e.g. trying to maximize data rate while meeting the FCC spectral mask. Post-modulation filtering to some degree is a simple expedient. Finally, aside from the above factors, the push toward high spectral efficiency will suggest moving bandwidthefficient signals even closer in channel spacing, in essence placing even tighter specifications on spectral emission.

The simulation processes the baseband complex envelope of a bandpass signal, and operates in discrete-time with eight samples per data bit, chosen to safely avoid aliasing phenomena. The signals of interest have spectra at least 30 dB down at the Nyquist frequency, which is four times the bit rate in this case. The data source is a 255-bit maximal length shift register sequence, with an extra 0 appended to balance the sequence. With eight samples per bit, we generate 2048 complex samples as the signal sequence. These signal samples are used repeatedly with new noise sequences to generate enough trials to yield statistical significance in error probability estimates. This choice simulates much more rapidly than an approach which generates new signal samples continuously.

The length of the PN sequence must be sufficiently long however to generate all significant unique data patterns as far as the channel output is concerned. Intersymbol interference is worse for certain patterns, and all significant patterns must be generated in the correct proportion. One of the properties of maximal length sequences is that the relative frequency of difierent N -tuples is very close to that of a coin-flipping procese. With the degree of channel filtering expected for
our simulation, $\mathrm{a} L=255$ bit sequence is expected to be adequate, as the essential memory of the channel does not exceed 8 bits, and the relative frequencies are correct for up to 8 -tuples.

The receiver simulation adds white Gaussian noise to the received signal and filters the sum (if desired). The noisy discrete-time process is processed by complex correlators to yield statistics for the Viterbi algorithm receiver. The system as descr'bed has no carrier phase shift, so this need not be compensated. However, there is group delay roughly proportional to $1 /$ (composise filter bandwidth) which is on the order of one bit or more. This delay must be compensated by the correlators, and can be done once for the various configurations. Our timing quantization is $\mathrm{T}_{\mathrm{b}} / 8$.

Once synchronized, the correlator outputs are passed to the ML routine having an appropriate state trellis for the modulation. After a sixteen bit delay, bit decisions are released by the decoder and compared with the actual PN sequence to compile error statistics.

Note that the receiver is optimal for AWGN environments and acts as if no channel distortions were present. Equalization could undoubtedly improve performance for severely bandlimited channels, and this could be investigated. However we feel that the initial study should be of the effect of channel distortion on performance of "conventional" receivers.

4.1 SIMULATION RESULTS

We first present results for MSK, a case for which results have recently appeared in the literature [1], [2], [3]. In Figure 4.2 we show the power spectrum at the modulator output, after filtering, and following hard limiting. The spectrum at the modulator output has side

lobes which decay as f^{-4}, and well-defined nulls. The minor roughness in the spectrum is due to finite-averaging of a random process. The filter used was a 0.5 dB ripple, 4 -pole Chebyshev characteristic with a BT product of 1.0. Note that this filtering truncates the mainlobe slightly, and obviously reduces sidelobe levels. The spectrum at this point would be comparable to QPSK with filtering at the first null in the spectrum ($B T=1$). The interesting effect of ideal limiting is to regenerate spectral "sidelobes" having level almost as large as originally present. The power spectrum is smoother, and lobes have been eradicated. This is completely in accord with recent results of [1].

Figure 4.3 presents similar results on spectra for a soft-limiter modelled as an error-function characteristic for $A M-A M$ and a $3^{\circ} / \mathrm{dB}$ for AM-PM. This is perhaps more representative of typical TWT characteristics. Note with 3 dB backoff, the total power, relative to that of full output, is reduced, but more importantly the spectral regeneration is less pronounced. Figure 4.4 does the same comparison with a 9 dB backoff so that the characteristic is essentially linear; however the AM-to-PM conversion effect is still present.

We also have capability for plotting amplitude and phase trajectories of the signal enroute. Figure 4.5 shows the amplitude, or envelope, of the filtered signal for filtered MSK with $B T=1$. The bit sequence corresponds to 000000010111000 . This plot gives an indication of the amplitude ripple produced by bandlimiting a constant-envelope signal, and in turn some notion of the severity of nonlinear amplifier distortion. Phase plots are of more interest as phase is the informa-

tion-bearing variable; however, the plots are currently difficult to interpret because of modulo- 2π restrictions in the angle definition.

Spectral results for double raised-cosine (DRC) with $h=1 / 4$, channel filtering with $\mathrm{BT}=0.5$, and hard limiting are shown in Figure 4.6. This design exhibits high bandwidth efficiency with $\mathrm{B}_{99} \mathrm{~T} \cong 0.7$, and sidelobes roll-off as f^{-8}. We again note that limiting reconstitutes spectral sidelobes to a large degree. Figure 4.7 repeats the analysis for 9 dB back-off as above.

A similar set of plots is shown in Figures 4.8 and 4.9 for 4-ary multi-h coding with deviation indices $4 / 16$ and $5 / 16$. The coding gain is 1.4 dB and the $\mathrm{B}_{99} \mathrm{~T}_{\mathrm{b}}=0.9,25 \%$ less than for MSK.

The sidelobe reconstitution is an interesting phenomenon which has received considerable attention for QPSK and offset QPSK, Basically, when a signal is hard-limited, the rather smooth trajectories of the filter output are "sharpened", moving a relatively larger percentage of power to higher frequencies. (Only the phase trajectory varies at the output of the limiter). However the phase trajectories remain smoother than at the modulator output, so sidelobe levels are still reduced by filtering, then limiting. We have shown that the asymptotic rate of decay at the limiter output is equal that at the filter output; however, asymptotic rates tell little of absolute levels or where the asymptotic rate pertains. We expect to study this further under the next contract (NAG3-141).

4.2 SOFTWARE DESCRIPTION

The complete listing of the software mouncos is iound in Appendix
A. Program SIMUL1 simulates a digital communication system with

50. 1

- (90) (-1) 5
characteristics similar to those of a typical satellite link. It is comprised of five basic sections; source (SORCE1, MARY), modulator (CPFSK, MULTIH, PARTLR), transmit filter (DIGBK), non-linear amplifier (TWT) and receive filter (DIGBK). Due to modularity, each section can be easily modified or totally skipped depending on the application. Furthermore, after each section the user can obtain complete documentation including envelope plot, and power spectrum phase trajectory, (PHASP, ENVELOP, EFTBK). When SIMUL1 is finished, 2048 samples of phase, represented in complex form are written to a file for use withe the receiver program. The over-all flow diagram is shown in Figure 4.10. A description of each section follows.

SORCE1 and MARY

Subroutines SORCE1 and MARY comprise the data source for the simulation. SORCEL generates a length 256 psuedo-random sequence of 1's and -1 's and stores them in an array for future reference. The sequence is formed using a 8-bit shift register with feedback. Subroutine MARY converts the binary sequence generated by SORCE1 into a M-ary sequence of length $256 / \mathrm{K}$, where $\mathrm{K}=\log _{2} \mathrm{M}$ and K is specified by the user. The M-ary symbol values are contained in the set $\{-(M-1), \ldots,-3,-1,1,3, \ldots(M-1)\}$ and the mapping is arbitrary.

CPESK, MULTIH AND PARTLR
Subroutines CPFSK, MULTIH and PARTLR form the modulator section of the simulation. In each case 2048 samples of the phase (8 samples per bit), represented in complex form are returned in a 2048 X 2 athy.
onmenal page is OF POOR QUALITY

Witure 4. 10 Software Flow Diacmam for Simulation Package

CPFSK simulates a continuous-phase FSK modulator with deviation parameter h specified by the user. The psuedo-random M-ary sequence generated by the source, in conjunction with h, detelmines whether the phase should advance or retard and by how much. The phase varies linearly over 1 symbol time with accumulated phase $m=d_{n} h 1 / M$. For the special case $h=.5$ the modulation becomes MSK.

MULTIH simulates a multi-h phase code modulator with $h_{1}, h_{2}, \ldots h_{K}$ specified by the user. MUL'TIH is similar to CPFSK except that h is now time varying.

PARLITR simulates a partial response EM code modulator with the response the K, the deviation parameter h and the pulse shape $g(t)$ specified by the user. The pulse shape $g(\tau)$ can be either rectangular or raised-cosine and lasts a total of K symbol durations. The composite phase at any one sample point is thus a function of the phase induced by the present symbol d_{n} and the phase induced by $K-1$ symbols of the past. For the special case $K=2$ and $g(r$ ' rectangular (binary source), the modulation is known as duobinary IM.

DIGBK

Subroutine DIGBK simulates a low pass, a-pole Chebychev digital filter with bandwidth BW specified by the user. The filter coefficients are pre-calculated by a digital filter design program employing the bilinear transformation and then stored on disk for future use. Subroutine DIGFIL within DIGBK reads these coeffigients off the disk and filters the time series data via a reeursive difference equation technique. The time series data is run through the filter twice to establish steady state conditions.

TWT

Subroutine TWT simulates a non-linear amplifier with characteristics similar to those of a Travelling Wave Tube amplifier used in may satellite transponders. Output distortion is a combination of two effects, AM-AM conversion and AM-PM conversion.

With AM-AM distortion, the output envelope is a non-linear function of the input envelope. The non-linearity is either a nard limiter in which case the output envelope is set to unity regardless of the shape of the input envelope, or a soft limiter described by the equation $\mathrm{y}=$ $\operatorname{erf}(x / \sigma)$. In the latter case σ controls the degree of limiting; i.e. as σ increases the amplifier becomes more linear and as σ decreases the amplifier saturates and behaves more like a hard limiter. $\operatorname{Erf}(x / \sigma)$ is computed using a 5 -term power series expansion with maximum error less than 7.5×10^{-8}.

In $A M-P M$ conversion, fluctuations in the input envelope cause phase distortion in the output waveform. This distortion is modeled by a 3° per dB characteristic, i.e.

$$
\theta=-(3.0 / 57.3) 20 \log (\mathrm{~A})
$$

where θ is the resulting change in output phase and A is the magnitude of the input waveform.

FFTBK, PHASP and ENVELP

Subroutines FFTBK, PHASP and ENVELOP comprise the documentation section of the simulation. FFTBK computes and plots an estimate of the power spectral density, $S(f)$, while PHASP computes and plots a phase trajectory (modulo 2Π) and ENVELOP computes and plots the envelope or magnitude of the complex time series data.

ORIGNAL ERS EG OF POOR QUALITY

Within subroutine FFTBK the time series data is first pre-multiplied by a Hanning window of the form

$$
H(n)=.54+.46 \cos \left(\frac{2 \Pi n}{2048}\right)
$$

to improve accuracy at low values of $\mathrm{S}(\mathrm{f})(-50 \mathrm{~dB}$ down). The modified time series data is transformed into the frequency domain via a 2048 point complex FFT. The magnitude of the resulting, frequency samples are then averaged with 10 adjacent samples to provide a smoother estimation of the power spectral density.

ORIGINAL PAGE IS OF POOR QUALITY

REFERENCES

1. Morais, D. H., and Feher, K., "The Effects of Filtering and Limiting on the Performance of QPSK, Offset QPSK, and MSK Systems," IEEE Trans. on Communications, December 1980.
2. Cruz, J. R. and Simpson, R. S., "Cochannel and Intersymbol Interference in Quadrature-Carrier Modulation Systems," IEEE Trans. on Communications, March 1981.
3. Prabhu, V. K., "MSK and Offset QPSK Modulation with Bandlimiting Filters," IEEE Trans. on Aerospace and Electronic Systems, January 1981.
 OF POOR QUALITY

APPENDIX A

```
C
O
C
C
C
C
C
C
20 Call sORCEI(NHATAymBTT)
    WFITE(7:21.2)
212 FORMAT('OBTNARY OR MMAFY'? (O OR 1)')
    FEALI(Ey21.4) TANS
214
FORMAT(IE)
```



```
C
O CHOOSE MONULATMON TYFE
C
2G WFITTE (7.1.98)
1.93 FORMAT('OCHOOSE MOLUNATHON'/
* TYFE'/
&'1+CFWFGK`
&'2. MULTTI.WH'/
&' 3. FAETTAL RESFONGE',
**WWHCH?')
```


ORIEINAL PAGE IS
 OF POOR QUALITY

```
IF(N ,NE, O) GOTO \%
CAILL FFTTNT('NOT JMFILEMENTEY AT THTS THME')
GO TO 2E
```

WFITE (7, 200)
FOFMAT('OFHASE:TRAJEWTOF FLOT?')
FEAX(Ey2OA) ANS

XMTEF FTLTEF ANE LOCUMENTATION
FEATI (تy $2(0 A)$ ANS
FORMAT (AI.)
TF (ANS , NE, YEA) BO TO 30

WFTTE (7y206)
FEAD (EvSOA) ANS

WFITE (7,220)
REMLIS: SOA) ANS

TWT NOIUN ANY MOCUMENTAYMON
FジャロI (シッ204) ANS
IFF (ANE , NE, YEA O OOTO : OO

WFTTE (7y 206)
FEM以 (Ey 20A) AN:

0

FEAD（5y200）ISW
FOFMAT（T6）
 \＆MOLJLy MF゙Y）
 \＆\＆K゙yMFY）
 \＆y MOLTIL уNT y MRY）

CMLL FFTNT(XO YOU WANT A 'WW"GHMUNATMON? (Y/N)')

ORIGINAL PAGE IS
 OF POOR QUALITY

CALL FRINT（＇WOULI YOU LTKE AMMITTONAL CHANNEL FTLTERING（Y／N）＇） FEALI（5．204）ANS
IF（ANG ，NE，YE＇A） 90 TO 60
 WRITE（7．206）
REATI（Sy2OA）ANS
IF（ANS ，EQ，YEA）CALL ENUEIFF（AッARyAIyND）
WFITE（7，220）
FEAD（Ey2OA）ANE

WRITE TTME SERTES MATA TO A FTLE
CAll Close（EO）

60 CALLE FRTNT（＇DO FEAII（5．204）ANS IF（ANS ，NE＋YEA $)$ GO TO 70 CALL FRJNT（＇INFUT FTLENAME＇） TERR＝O

CALL ASSTGN（IOッFNAMEッリッ＇NEW＇）
 CALL CLOSE（10）

 FORMAT（＇OSUMMAEY OF GIMLDATTON＇／ \＆OFILENAME：＇y．EA！

＊＇XMTF FLLTE：＇yISA』／
\＆TWT：＇yAMI／

WRITE（7．210）
210 FORMAT（＇OSTMLUATAON IS COMFINTE＇） stof
ENII

ORIGINAL PACE［S

OF POOR QUALITY

SUBROUTINE SORCEI（NLATAYTBIT）

```
C
O
C
C
C. FERFORM TME RTGMT SHIFT
    [0 30 J=1.47
    [1(9-J)=[1(8--.1)
30 CONTMNE
    I(1)=:F(3)
```



```
    CONTINUE .
    FETUFN
    ENI:
*
    THIS FROGRAM GTMULATES A ZES BIT FN GENEFATOR
```



```
        HTMENGTON TBIT(NDATA)
        LOGLCML. [(8)ッF゙(3)
```



```
        LicEO T.:%.NRIATA
        F(1)==(.N(OT,O(3),ANH.M(%)) ,OK& (M(8).ANM, (.NOT.H(7)))
```



```
        F(3)==(,NOT,F゙(2),ANI,H(2)) ,OK, (F'(2),AND,(,NOT,H(2)))

\section*{ORIGINAL PAGE IS OF POOR QUALITY}
```

 SUBROUTTNE MARY(NAATA IRITrM)
 C
C

```

```

C
IIMENSION IRTY(NIATA)
2 0
200
2 1 0
C
C
CONTMTNW:
RETURN
imN!
*

```
```

SURROUTTNE CFFSK（AyND，NDATAッFSyTBTT，HッN，MODILIM）
THIS FROGRAM GTMULATES CFFSM ANO RETUFNS SAMFILER

```

``` GOURCE XITSy FS＝SAMPLTNG FBEOUENCY RELATTUE TO RATA RATE IEIT ：DATA日HENEGUENGY DEUATHON
```

```
GIMENSTON A(NHy2),IBTT(NAMTA) Y(ORTH(2)
```

GIMENSTON A(NHy2),IBTT(NAMTA) Y(ORTH(2)
FEAL. FITMMONTA(2)

```

```

LIATA FI/Z3+14\&5%2/yANG/O./ッド/O/
IIATA OFST/O.O/
MONTM(L)=TOMmN(1)
Monmm(2)=ronmu(2)
IETERMINE MOLULATOR FARAMETERG
WFITE（ 7.100 ）
FOFMAT（＇OTHISS SIMULATES CF－NFK．＇／
*' INFUT H')
REAL (5:102) H
FOFMAT (FG%,3)
IFS=IFIX(FS)*M
NSYM\&L=NLMATA/M
FEEFORM GRMUNATION
I=0
I=T+|
J:=0
J=.f+1
ANG\#OFGTH(TETT(T)*H*FTW*)/(FG*M)
バ=に゙ない
A(N゙ッ|)=COG(ANO)
A(K゙g2)=:STN(ANG)
TF(J.LT,TFG) GO TO 20
0FST=0%sT+\piBr(%)*Ww?
TF(I,IT,NGYMBI. (EO TO 10
TF(N゙+EQ.NW) [O TO :O
TFG=NNMEFSNNGMMA
(0) TO 1.0
cONTMNUE
N=1.
EETURN

```

\(\stackrel{C}{C}\)

OFST：（\％．0
\(50 \quad \mathrm{I}=\mathrm{m}\)

 ． \(5=10\)
\(25,-5+1\)

I．．．＂\(=1.1\)
\(\operatorname{A}(L, 1)=\cos (\operatorname{AN}(3)\)
A（L， 2 ）\(=\mathrm{mIN}(\mathrm{ANG})\)
IF（J＋LT•TFS）GO TO 5
OFSTOFSTHET（T）WH（MH）＊FT

JF（L．EER．NIS DO TO YO
IFS＝NLITHSKNGYMEL
80 TO 50
EETURTN
ENT：
THES SURROUTTNE STMULATES A MULTTH FHASE CORE MAS IN MMARY

monna（2）

मATA K゙MAX／3／ッ L／O／
monta（1）＝T0nTm（1）
Montro（2）mrominco：
\(\mathrm{N}=1\).
NGYMEL＝NDATA／M

\section*{TNFUT FAKAMETENG（K゙ッH（が）〉}

WFITTE（7y200） \＆＇TNFUT K（\＃，OFH FARAMETERE＇，

FEALI（Ey202）K゙
FORMAT（T： B ）
IF（K．LT．A）G0 T0 30
WFITTE（7ッ2OA）

00 TO \(2 \%\)
WRITE（7：206）

FORMAT（3F6． 3 ）
FEFROKM STMUMTMON MODULATOR，AWTMME SERTES DATA，NDATAB\＃OF DATA BITS．

65

\section*{ORIGINAL PAGE IS OF POOR QUALITY}


```

        TF(NT, LT,NTMAX) 60 TO 80
        WFTTE("%198) NTMAX
        FORMAT(' NT MUST RE <', प%)
        GO TO EO
        IF(ISW.EO, 只) 00 TO 8%
    ```

```

        MOKIM(4)=='OMNM(4)
        00 T0 87
        85 MONTE(3)=MONTM(:3)
        MONTN(4)=TONTM(G)
        CONTINUE:
        FHFH
        IFS=TFTX(FG) WMM
        NSYMELL:NNLATM/MM
        C FEFHORM STMUNATMON
        [10 90 [N:#.1. yNT-m%
    ```

```

        J:=.W.]
        ぶ=に゙れ1
        L=#.\
        F:=0.0
        M0) 120 TN=\.yNT
        F=F+FHASE(EFFEU(IN)yLy,NSW)
        L..#...'r(8*MM)
        F=CH+F
        A(N゙y1)=#COS(F)
        A(k゙y2)=:#IN(F)
    ```



```

        IF(M,GE,NGYMEM) GO TO I.4O
        TFHEU(I):TWTT\(M+I)
        (3)}7010
        1.40 IF(K゙, EO,NN) BO YO %:%O
        IFS=ND-WHSNSYMEL
    ```

```

        G0 TO 100
        BETURN
        FETUFN
    ```
 1.78
 30 CONTCNLE:
 \(\stackrel{\square}{C}\)
 C
 90
 1.00
 11.0
 120 CONTTNUFE:
 A3E CONTIN:
```

            ENI
            BEAL FINNCTKON FHASE(L,MMッN)
            COMMON FHG%FI,FHyNTyMM
            TF(N.EQ.1) G0 TO :30
            FHA=(FHWFFWL_)/(NT*MM)
            FHAS=STN((2,OWFTWM)/(FFSSNT*MM) )
    ```

```

            RETUFN
            EO FHASE=(LWFHXFTWM)/(NTWFFG*MM)
            REETUFN
            ENL
    ```
 *

\title{

}
 FAUSE 'ROLL FAFER TO NEXT TO BOTTOM LTNE THEN CCRS'
 DUME \(=0.0\)

 CALLL HFFLT(AyNHyS)
 FEWTNO FO
 REAL (50) A
 REWINL EO
 EETUREN
 ENM

THIS FROBRAM FLIOTS A ORAFH OF THE GIGNAL． ENUELOFE VB，TIME A ATTME SERTES DATA，NH＝
 AI（K゙）＝А（K゙っ2）

REAL＊G XNAME（2）YYNAME（2）
DATA XNAME／＇TTME＇＂SECONDE＇／ IATA YNAME／＇GTGNAL．＇y＇ENVELIOFE＇／ \(N S=100\)
NSMAX \(=1: 0\)
WFITE（GO）A
UETEFMNE FLOT FABAMETERG
```

WFITE（79200）

```

FORMAT（＇OACCEFT（CGRS）OR CMANGE（／ANEW UALUESCCES THE＇／ \＆NUMBER OF GAMFINES TO BE FLOTYED（NG）\％

CALL INTHOX NG＇yNS，NSMAXyO）
CALCULATE MAGNTHEE
DO \(10 \mathrm{~J}=\mathrm{myN}\)

CONTINUE
FIOT ENUELOPE ON CRT OR DECWRTEER AND GAVE DATA

FAUSE＇ROLL FAFER TO NEXT TO BOTTOM LITE THEN \＆CRS＇
UUMB \(=0.0\)

CALL HFFLT（AyNHyNS）
FEWTND EO
REALI（EO）A
FETUREN
ENW．

\section*{OREMEA PNET 5 of POOR QUALITY}

 \(A F(J)=, J \cdots\)
CONTINUE:

WEAL *8 XNAME (2) y YNAME: (2)
DATA FT/ 3 + \(1.41592654 /\)
LIATA XNAME/'FHASEE ' ' (FAM) / /
LATA YNAME: 'SAMEIEE 'ッ'INIEX '/ WFITE (EO) A

DETEFMJNE FI OTTING FAFAMETEFS
\[
\Gamma F=2 * F
\]

IFF=1.
\(N W=150\)
WFITE (7y200)

WFITE (7, 202)

F'AUSE 'ROLI. FAFEF'
BEWTND :OO
BEAM(EO) A
F゙EWTNM \#O
RETUFN
ENI.


```

FLOT FHABE TRAJECTORY ON CFT OK DECWRITER AND SAUE MATA

```


\section*{SUBFOUTTNE FFTEK（AyARyATyNLyTEXF）}
```

C
REAL*B XNAME(2),YNAME(2)
MIATA XNAME/'(F゙RB),"', (IBS) '/
LATA FI/B.LAL59265%58/
IITMENGION X(1.29)
\#IMENSION A(ND,2),AR(ND)YAT(NL),B(2)ッC(2)
BYTE ANS:YEA
DATA YEA/'Y'/
C
KS＝11．
NIFF＝51．2
NNDMNLIL
Naf：$=4$
WRTTE（79206）
WFTTE（7y202）
FOFMAT（＇OLO YOU WANT A FFT？（Y／N）＇）
KEAD（Sy2OA）ANG
FORMAT（AI．）
IF＇（ANS ，NE：YEA）RETURN
WRTTE（50）A

```

```

MULTIFLY TIME GERTES DATA BY HANNTNG WTNDOW

```

```

$Y=F F I O A T(N ゙-N D / 2) / F=1$ OAT（NII）
W＂0． $5+0.5 \pi \cos (2 * F T * Y)$
$\mathrm{A}(\mathbb{K}, 1)=\mathrm{A}(\mathbb{K}, 1)$ ※ A（K゙ッコ）$=\mathrm{FA}(\mathbb{K} ッ コ)$＊W
CONTINUE

```

```

FORMAT（＇OACOEFT（CCR＇）OR CHANGE（／CNEW VAL UESCCK？THE＇／ ？＇FOLIOWING FARAMETER UALUES ASGOCIATED WITH THE：FLOT＇，

```

```

    CALL INT'TO(' NEF',NEFyAOyO)
    ```


```

    WKITE(7y20日)
    F゙OFNYAT('OSMOOTHTNC CONGTANT(K゙G)'/
    &' K゙S MUST EE OHMyバS=心 F゙OF NO SMOOTHJNG`)
    CALL INTIOく, K゙S'ッバSy\゙ByO)
    K゙S!=(<゙S"-1)/2
    <゙S2:=バSむれ1
    NF'TS=NLF/NBF'
    c
C
%

```

```

    バ=0
    LIO 27 J=1 y NL.F y NEF
    バ=に゙+!
    X(バ)=:=0.
    ```

```

    nu 26 k゙バ=\MッJなぐS%
    26
NF'TS
C



```
 IIUME:=0.0
```



```
 FEWJNIM 50
 FEAM(50)A
 FHWTNT: BO
 RETUFN
 EN[
*
```


## OMGINA MRES I <br> OF POOR QUALITY

## GUBEOUTTNE TWT (XッND, TWTIM)




```
 1.00 CONTINUE
 \5O FETUEN
 ENM
 FEAL FUNCHTON F゙!(MッJSW)
C INEAL. LIMTTEW
```





```
 COMMON S%SF
 IF(TSW,E#CO) GOTTO EO
 Z=SFXEXF(--(A**S'S)/2.O)
 T1=1,0/(1,0+F-*用)
 T2==T1**2
 T3=T゙芜T!
 T4=TЗ*TJ
 TS=TA*T:L
```



```
 FJ:=2*(.E-NF)
 FETUN'N
 W0 FE|=|,0
 FETUFN
 EN\I
 FUNCTION FO(AyTGW)
 IF(ISW,EQ, I) (30 TO W0
```



```
 NETUKN
 FO:=0.0
 FETUURN
 ENI
*
```



```
c
C
C
C
C
C
C
THTS GUBROUTINE GTMLIATEG A UABTABLE BANDWTITHy A-FOLE CHEBYCHEU LOW FOSS FTLTERE 〈SUBROUTINE DHGFTLLDOES THE
```



``` FNAMEEFTLTER COEFTCHENT FTEENAME
```

```
EYTE ANSyYEA,FNAME(15)
```

EYTE ANSyYEA,FNAME(15)
LOSICAL FTRST

```

```

LIATA YEA /'Y'/
WRTTE (50) A
SELECT FTLTER BANDWTKTH
WRITE (7.200)
FORMAT ('OFILEE DESCRTFTION'/

```


``` *'OUFUUT FTLTEEK COEFFTCTENT FTLENAME')
```

CALL GETSTF(E,FNAMEy\AyIEFN)
CALL ASSTGN (IO,FNAME,IA"'FOOC)

```


```

\&(2Xy8(2X,(%13.6)))
CALL CLOSE(10)
[0 20 J=:1. y %
m0 10 T=1.N
CT(NJIT)=CR(J,IT)
CONTINLIE:
CONTINUE:
FEFFORM FTLTERTN URA SURGOUTNE MIGFM, MATA IS FASGEL
THROUGH FTLTER TWEEE TO OBTATN INNTMA CONDTTHONS.
FTRST:= , TRUE.

```

```

CALLE HTCFTL(2,CTyNDyATYAT)
MFSTRGT ,E(N.,FALSE,) GO TO 4O

```

```

FEWTND:EO
BEAD (EO) A
GO TO 30
FEWINL EO
FETUFN
END

```
```

