172 research outputs found
Recommended from our members
Whole exome sequencing identifies genetic markers of enterovirus susceptibility in East Asians.
INTRODUCTION: Following acute enterovirus (EV) infection, outcomes vary based on factors like the immune response, viral cell entry receptor expression levels, tissue tropism, and genetic factors of both the host and virus. While most individuals exhibit mild, self-limited symptoms, others may suffer severe complications or prolonged infections that can lead to autoimmune disorders. METHODS: To elucidate host responses to EV infection, we performed whole exome sequencing on blood samples from both infected and uninfected individuals. Our initial focus was on genes encoding EV entry receptors-PSGL-1, SCARB2, and ANAXA2 for EV-A71, and CD155 for poliovirus-and on host genes ACBD3 and PI4KΒ, crucial for EV replication. RESULTS: Although no specific genetic variants directly associated with EV infection were identified, we discovered 118 variants across 116 genes enriched in East Asian populations through multi-layered variant filtering. These variants were further analyzed for their potential impacts on organs, biological processes, and molecular pathways. Phenome-wide association studies were conducted to refine our understanding of their contributions to EV infection susceptibility. DISCUSSION: Our findings aim to develop a predictive panel based on these 118 variants, which could help susceptible individuals during EV outbreaks, guiding targeted clinical interventions and preventative strategies
Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in male oral squamous cell carcinoma patients
Objectives: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor,
is a pro-inflammatory cytokine whose serum level is increased in various cancers. In this study, we investigated
whether plasma visfatin levels were altered in patients with oral squamous cell carcinoma (OSCC). The relation
ship between plasma visfatin levels and the pretreatment hematologic profile was also explored.
Study
Design: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub-
D
esign: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub-
esign: Plasma visfatin concentrations were measured through ELISA in OSCC patients and control sub
jects. A total of 51 patients with OSCC and 57 age- and body mass index (BMI)-matched control subjects were
studied. All study subjects were male.
Results: Plasma visfatin was found to be elevated in patients with OSCC (7.0 ± 4.5 vs. 4.8 ± 1.9 ng/ml, p = 0.002).
Multiple logistic regression analysis revealed visfatin as an independent association factor for OSCC, even after
full adjustment of known biomarkers. Visfatin level was significantly correlated with white blood cell (WBC)
count, neutrophil count, and hematocrit (all p < 0.05). In addition, WBC count, neutrophil count, and visfatin
gradually increased with stage progression, and hematocrit gradually decreased with stage progression (all p <
0.05).
Conclusion: Increased plasma visfatin levels were associated with OSCC, independent of risk factors, and were cor
related with inflammatory biomarkers. These data suggest that visfatin may act through inflammatory reactions to
play an important role in the pathogenesis of OSC
Ginsenoside-Rg1 Protects the Liver against Exhaustive Exercise-Induced Oxidative Stress in Rats
Despite regular exercise benefits, acute exhaustive exercise elicits oxidative damage in liver. The present study determined the hepatoprotective properties of ginsenoside-Rg1 against exhaustive exercise-induced oxidative stress in rats. Forty rats were assigned into vehicle and ginsenoside-Rg1 groups (0.1 mg/kg bodyweight). After 10-week treatment, ten rats from each group performed exhaustive swimming. Estimated oxidative damage markers, including thiobarbituric acid reactive substance (TBARS) (67%) and protein carbonyls (56%), were significantly (P < 0.01) elevated after exhaustive exercise but alleviated in ginsenoside-Rg1 pretreated rats. Furthermore, exhaustive exercise drastically decreased glutathione (GSH) content (∼79%) with concurrent decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities. However, these changes were attenuated in Rg1 group. Additionally, increased xanthine oxidase (XO) activity and nitric oxide (NO) levels after exercise were also inhibited by Rg1 pretreatment. For the first time, our findings provide strong evidence that ginsenoside-Rg1 can protect the liver against exhaustive exercise-induced oxidative damage
Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles
BACKGROUND: Previous studies reported divergent results on nutraceutical actions and free radical scavenging capability of ginseng extracts. Variations in ginsenoside profile of ginseng due to different soil and cultivating season may contribute to the inconsistency. To circumvent this drawback, we assessed the effect of major ginsenoside-Rg1 (Rg1) on skeletal muscle antioxidant defense system against exhaustive exercise-induced oxidative stress. METHODS: Forty weight-matched rats were evenly divided into control (N = 20) and Rg1 (N = 20) groups. Rg1 was orally administered at the dose of 0.1 mg/kg bodyweight per day for 10-week. After this long-term Rg1 administration, ten rats from each group performed an exhaustive swimming, and remaining rats considered as non-exercise control. Tibialis anterior (TA) muscles were surgically collected immediately after exercise along with non-exercise rats. RESULTS: Exhaustive exercise significantly (p<0.05) increased the lipid peroxidation of control group, as evidenced by elevated malondialdehyde (MDA) levels. The increased oxidative stress after exercise was also confirmed by decreased reduced glutathione to oxidized glutathione ratio (GSH/GSSG ratio) in control rats. However, these changes were completely eliminated in Rg1 group. Catalase (CAT) and glutathione peroxidase (GPx) activities were significantly (p<0.05) increased by Rg1 in non-exercise rats, while no significant change after exercise. Nevertheless, glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly increased after exercise in Rg1 group. CONCLUSIONS: This study provide compelling evidences that Rg1 supplementation can strengthen antioxidant defense system in skeletal muscle and completely attenuate the membrane lipid peroxidation induced by exhaustive exercise. Our findings suggest that Rg1 can use as a nutraceutical supplement to buffer the exhaustive exercise-induced oxidative stress
Interoceptive awareness: MBSR training alters information processing of salience network
Mindfulness refers to a mental state of awareness of internal experience without judgment. Studies have suggested that each mindfulness practice may involve a unique mental state, but the underlying neurophysiological mechanisms remain unknown. Here we examined how distinct mindfulness practices after mindfulness-based intervention alter brain functionality. Specifically, we investigated the functional alterations of the salience network (SN) using functional magnetic resonance imaging (fMRI) among the two interoceptive mindfulness practices—breathing and body scan—associated with interoceptive awareness in fixed attention and shifted attention, respectively. Long-distance functional connectivity (FC) and regional homogeneity (ReHo) approaches were applied to measure distant and local neural information processing across various mental states. We hypothesized that mindful breathing and body scan would yield a unique information processing pattern in terms of long-range and local functional connectivity (FC). A total of 18 meditation-naïve participants were enrolled in an 8-week mindfulness-based stress reduction (MBSR) program alongside a waitlist control group (n = 14), with both groups undergoing multiple fMRI sessions during breathing, body scan and resting state for comparison. We demonstrated that two mindfulness practices affect both the long-distance FCSN and the local ReHo, only apparent after the MBSR program. Three functional distinctions between the mindfulness practices and the resting state are noted: (1) distant SN connectivity to occipital regions increased during the breathing practice (fixed attention), whereas the SN increased connection with the frontal/central gyri during the body scan (shifting attention); (2) local ReHo increased only in the parietal lobe during the body scan (shifting attention); (3) distant and local connections turned into a positive correlation only during the mindfulness practices after the MBSR training, indicating a global enhancement of the SN information processing during mindfulness practices. Though with limited sample size, the functional specificity of mindfulness practices offers a potential research direction on neuroimaging of mindfulness, awaiting further studies for verification
Comparing fine motor performance among young children with autism spectrum disorder, intellectual disability, attention-deficit/hyperactivity disorder, and specific developmental disorder of motor function
ObjectiveThe acquisition of fine motor skills is considered to be a crucial developmental milestone throughout early childhood. This study aimed to investigate the fine motor performance of young children with different disability diagnoses.MethodsWe enrolled a sample of 1,897 young children under the age of 6 years who were at risk of developmental delays and were identified by a transdisciplinary team. A series of standardized developmental assessments included the Bayley Scales of Infant Development-Third Edition, Wechsler Preschool and Primary Scale of Intelligence-Fourth Edition, Peabody Developmental Motor Scale-Second Edition, and Movement Assessment Battery for Children-Second Edition were used. Retrospective chart reviews were conducted on all children to identify specific developmental disorders. The number of autism spectrum disorder (ASD), intellectual disability (ID), attention-deficit/hyperactivity disorder (ADHD), comorbidity, motor dysfunction, and unspecified developmental delays (DD) were 363 (19.1%), 223 (11.8%), 234 (12.3%), 285 (15.0%), 128 (6.7%), and 590 (31.1%), respectively.ResultsYoung children with ID, comorbidity, and motor dysfunction demonstrated significant difficulty in performing manual dexterity and visual motor integration tasks and scored significantly lower in these areas than children with ASD, ADHD, and unspecified DD. In addition, fine motor performance was associated with cognitive ability in children with different disability diagnoses, indicating that young children showed better fine motor performance when they demonstrated better cognitive ability.ConclusionOur findings support that differences in fine motor performance differ by disability type. Close links between fine motor performance and cognitive ability in children under the age of 6 years were seen in all disability types
ENU Mutagenesis Identifies Mice with Morbid Obesity and Severe Hyperinsulinemia Caused by a Novel Mutation in Leptin
BACKGROUND: Obesity is a multifactorial disease that arises from complex interactions between genetic predisposition and environmental factors. Leptin is central to the regulation of energy metabolism and control of body weight in mammals. METHODOLOGY/PRINCIPAL FINDINGS: To better recapitulate the complexity of human obesity syndrome, we applied N-ethyl-N-nitrosourea (ENU) mutagenesis in combination with a set of metabolic assays in screening mice for obesity. Mapping revealed linkage to the chromosome 6 within a region containing mouse Leptin gene. Sequencing on the candidate genes identified a novel T-to-A mutation in the third exon of Leptin gene, which translates to a V145E amino acid exchange in the leptin propeptide. Homozygous Leptin(145E/145E) mutant mice exhibited morbid obesity, accompanied by adipose hypertrophy, energy imbalance, and liver steatosis. This was further associated with severe insulin resistance, hyperinsulinemia, dyslipidemia, and hyperleptinemia, characteristics of human obesity syndrome. Hypothalamic leptin actions in inhibition of orexigenic peptides NPY and AgRP and induction of SOCS1 and SOCS3 were attenuated in Leptin(145E/145E) mice. Administration of exogenous wild-type leptin attenuated hyperphagia and body weight increase in Leptin(145E/145E) mice. However, mutant V145E leptin coimmunoprecipitated with leptin receptor, suggesting that the V145E mutation does not affect the binding of leptin to its receptor. Molecular modeling predicted that the mutated residue would form hydrogen bond with the adjacent residues, potentially affecting the structure and formation of an active complex with leptin receptor within that region. CONCLUSIONS/SIGNIFICANCE: Thus, our evolutionary, structural, and in vivo metabolic information suggests the residue 145 as of special function significance. The mouse model harboring leptin V145E mutation will provide new information on the current understanding of leptin biology and novel mouse model for the study of human obesity syndrome
- …