103 research outputs found

    Analysis of single particle trajectories: when things go wrong

    Full text link
    To recover the long-time behavior and the statistics of molecular trajectories from the large number (tens of thousands) of their short fragments, obtained by super-resolution methods at the single molecule level, data analysis based on a stochastic model of their non-equilibrium motion is required. Recently, we characterized the local biophysical properties underlying receptor motion based on coarse-grained long-range interactions, corresponding to attracting potential wells of large sizes. The purpose of this letter is to discuss optimal estimators and show what happens when thing goes wrong.Comment: 4 page

    Residence times of receptors in dendritic spines analyzed by simulations in empirical domains

    Get PDF
    Analysis of high-density superresolution imaging of receptors reveal the organization of dendrites at the nano-scale resolution. We present here simulations in empirical live cell images, which allows converting local information extracted from short range trajectories into simulations of long range trajectories. Based on these empirical simulations, we compute the residence time of an AMPA receptor (AMPAR) in dendritic spines that accounts for receptors local interactions and geometrical organization. We report here that depending on the type of the spine, the residence time varies from one to five minutes. Moreover, we show that there exists transient organized structures, previously described as potential wells that can regulate the trafficking of AMPARs to dendritic spines.Comment: 19 page

    Novel Insights into the Bovine Polled Phenotype and Horn Ontogenesis in Bovidae

    Get PDF
    Despite massive research efforts, the molecular etiology of bovine polledness and the developmental pathways involved in horn ontogenesis are still poorly understood. In a recent article, we provided evidence for the existence of at least two different alleles at the Polled locus and identified candidate mutations for each of them. None of these mutations was located in known coding or regulatory regions, thus adding to the complexity of understanding the molecular basis of polledness. We confirm previous results here and exhaustively identify the causative mutation for the Celtic allele (PC) and four candidate mutations for the Friesian allele (PF). We describe a previously unreported eyelash-and-eyelid phenotype associated with regular polledness, and present unique histological and gene expression data on bovine horn bud differentiation in fetuses affected by three different horn defect syndromes, as well as in wild-type controls. We propose the ectopic expression of a lincRNA in PC/p horn buds as a probable cause of horn bud agenesis. In addition, we provide evidence for an involvement of OLIG2, FOXL2 and RXFP2 in horn bud differentiation, and draw a first link between bovine, ovine and caprine Polled loci. Our results represent a first and important step in understanding the genetic pathways and key process involved in horn bud differentiation in Bovidae

    Single particle trajectories reveal active endoplasmic reticulum luminal flow

    Get PDF
    The endoplasmic reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell[1, 2]. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicrometre distances. Understanding the ER structure–function relationship is critical in light of mutations in ER morphology-regulating proteins that give rise to neurodegenerative disorders[3, 4]. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, while fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.Wellcome Trust - 3-3249/Z/16/Z and 089703/Z/09/Z [Kaminski] UK Demential Research Institute [Avezov] Wellcome Trust - 200848/Z/16/Z, WT: UNS18966 [Ron] FRM Team Research Grant [Holcman] Engineering and Physical Sciences Research Council (EPSRC) - EP/L015889/1 and EP/H018301/1 [Kaminski] Medical Research Council (MRC) - MR/K015850/1 and MR/K02292X/1 [Kaminski

    Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging

    Get PDF
    Simultaneous tracking of many thousands of individual particles in live cells is possible now with the advent of high-density superresolution imaging methods. We present an approach to extract local biophysical properties of cell-particle interaction from such newly acquired large collection of data. Because classical methods do not keep the spatial localization of individual trajectories, it is not possible to access localized biophysical parameters. In contrast, by combining the high-density superresolution imaging data with the present analysis, we determine the local properties of protein dynamics. We specifically focus on AMPA receptor (AMPAR) trafficking and estimate the strength of their molecular interaction at the subdiffraction level in hippocampal dendrites. These interactions correspond to attracting potential wells of large size, showing that the high density of AMPARs is generated by physical interactions with an ensemble of cooperative membrane surface binding sites, rather than molecular crowding or aggregation, which is the case for the membrane viral glycoprotein VSVG. We further show that AMPARs can either be pushed in or out of dendritic spines. Finally, we characterize the recurrent step of influenza trajectories. To conclude, the present analysis allows the identification of the molecular organization responsible for the heterogeneities of random trajectories in cells
    • …
    corecore