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Abstract: 13 

One of the defining features of mosquito vectors of arboviruses such as Dengue and 14 

Zika is their ability to tolerate high levels of virus proliferation without suffering 15 

significant pathology.  This adaptation is central to vector competence and disease 16 

spread. The molecular mechanisms, pathways, cellular and metabolic adaptations 17 

responsible for mosquito disease tolerance are still largely unknown and may 18 

represent effective ways to control mosquito populations and prevent arboviral 19 

diseases. In this review article, we describe the key link between disease tolerance 20 

and pathogen transmission, and how vector control methods may benefit by 21 

focusing efforts on dissecting the mechanisms underlying mosquito tolerance of 22 

arboviral infections. We briefly review recent work investigating tolerance 23 

mechanisms in other insects, describe the state of the art regarding the mechanisms 24 

of disease tolerance in mosquitos, and highlight the emerging role of gut microbiota 25 

in mosquito immunity and disease tolerance. 26 

 27 
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Introduction:  32 

 Diseases caused by mosquito-borne arboviruses like Dengue, Zika, 33 

Chikungunya, Yellow Fever, West Nile (WNV), Mayaro and Japanese Encephalitis 34 

(JEV), are important sources of worldwide morbidity and mortality. Dengue fever 35 

alone affects more than 390 million people every year in tropical and sub-tropical 36 

areas of the world (Bhatt et al. 2013). In the absence of an efficient vaccine, and 37 

faced with the emergence of insecticide resistant mosquito strains, it is important to 38 

explore alternative avenues of vector control. One approach is to focus on the 39 

behavioral and physiological determinants of vectorial competence, including how 40 

mosquitoes maintain homeostasis and fitness while infected with arbovirus, and 41 

how this trait influences disease transmission. If we understand what makes a good 42 

vector, we may begin to uncover new ways to reduce or even disrupt vectorial 43 

capacity.  44 

  A fundamental feature of mosquito–virus interactions is that following the 45 

ingestion of an infectious blood meal there is proliferation and spread of virus 46 

particles from the mosquito midgut to the salivary glands. During this process, 47 

mosquitoes often experience minimal physiological and fitness costs associated with 48 

arbovirus replication (Moreno-Garcia et al., 2014; Shaw et al., 2018), highlighting 49 

how mosquito vectors are tolerant to arbovirus infection (Lambrechts and Saleh, 50 

2019). Although some work has reported different degrees of fitness costs to 51 

mosquitoes during arbovirus infection (Lambrechts and Scott, 2009; Grubaugh et al., 52 

2017; Petersen et al., 2018; Silveira et al., 2018), virus proliferation is frequently 53 

non-pathogenic and the observed harm is host and pathogen strain-specific (Martin 54 

et al., 2010; Reiskind et al., 2010; Tesla et al., 2018; Sirisena et al., 2018). 55 

 Disease tolerance is a host defense strategy to maximize homeostasis and 56 

fitness independent of mechanisms that kill microbes. It acts in concert with other 57 

evolutionary conserved defensive strategies, such as immune resistance (killing 58 

microbes) and behavioral avoidance (reducing the risk of infection). The ability to 59 

tolerate a viral infection is no doubt an essential attribute of an effective disease 60 

vector. Given the prevalence of insect-vectored human pathogens, it is striking that 61 

we currently know so little about how mosquitos are able to tolerate infection by 62 
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the viruses they vector, and how this ability varies in natural mosquito populations 63 

(Dharmarajan et al., 2019). By understanding the metabolic and molecular 64 

mechanisms that promote disease tolerance in mosquitoes, we may uncover novel 65 

targets to reduce vector competence and block virus transmission to humans.   66 

 67 

The link between tolerance and transmission: 68 

 Organisms have evolved a variety of behavioral and physiological strategies 69 

to avoid, clear or tolerate infections. Immune-mediated pathogen killing is a well-70 

studied strategy that contributes to disease resistance. Acting independently or in 71 

cooperation with mechanisms that kill pathogens, immune-metabolic and 72 

physiological responses to infection may also promote tissue protection or repair, 73 

preserving host homeostasis during infection (Martins et al., 2019; Ganeshan et al., 74 

2019). These responses secure host health and recovery independently of pathogen 75 

killing, and so they are likely to promote disease tolerance, allowing hosts to 76 

maintain a relative level of health despite harboring relatively high pathogen 77 

burdens (see Box 1). The concept of health is directly connected to homeostasis and 78 

the ability to maintain animal physiologies operating properly at the cellular, tissue 79 

and systemic levels (Buchman , 2002; Chovatiya and Medzhitov, 2014).   80 

 While disease tolerance may improve host health at the individual level, 81 

because infectious hosts remain alive and healthy for longer, one potential 82 

population-level consequence of elevated disease tolerance is an increase in the 83 

prevalence of infection (Miller et al., 2005; Read et al., 2008; Vale et al., 2014). 84 

Beyond this intuitive reasoning, there is evidence from both theoretical and 85 

experimental approaches that reducing the severity of disease in the host 86 

(increasing disease tolerance) can lead to increased spread and prevalence of 87 

infection (Hozé et al., 2018; Read et al., 2015; Vale et al., 2014).  For example, 88 

environmental conditions conducive to greater disease tolerance have been found to 89 

foster super-shedding individuals who contribute disproportionately more to the 90 

total transmission (Vale et al., 2013, 2011), while therapeutic interventions that 91 

boost host tolerance are predicted to increase the prevalence of infections (Hozé et 92 

al., 2018; Vale et al., 2014), mainly through the impact of increasing host lifespan, 93 
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and consequently, the infectious period. To fully grasp the consequences of disease 94 

tolerance for pathogen spread, it is therefore important to quantify the extent of 95 

natural variation in infection tolerance, and test if more tolerant individuals have 96 

greater potential for disease transmission (Henschen and Adelman, 2019; Vale et al., 97 

2013). 98 

 99 

How do organisms tolerate infection? 100 

 Understanding the physiological mechanisms underlying disease tolerance 101 

phenotypes in mosquitos would be helpful in designing therapeutic interventions 102 

that aim to reduce their tolerance to vectored pathogens as a means of reducing 103 

their vectorial competence (Shaw et al., 2018). The most obvious candidates for 104 

such mechanisms are those which either prevent tissue damage from occurring or 105 

that are central in the process of repairing tissue damage (Martins et al., 2019; 106 

Soares et al., 2017, 2014). Mechanisms that target secreted virulence factors or 107 

toxins, for example, are good candidates for tolerance mechanisms because they can 108 

prevent pathology without directly eliminating pathogens (Allen et al., 2014; Rasko 109 

and Sperandio, 2010; Vale et al., 2014). Disease severity is also directly affected by 110 

immunopathology induced during prolonged or unregulated inflammatory 111 

responses to pathogens, and therefore anti-inflammatory mechanisms are equally 112 

promising mechanisms of disease tolerance (Ayres and Schneider, 2012; Martins et 113 

al., 2019; Vale et al., 2014). Finally, once damage has occurred, more tolerant hosts 114 

are likely to repair tissue damage and recover from infection. Our understanding of 115 

how mosquito vectors tolerate infection would therefore be greatly enhanced by 116 

focusing our efforts on mechanisms that promote physiological integrity, reduced 117 

inflammation and enhanced tissue damage repair. However, we currently have a 118 

limited understanding of the physiological and immune mechanisms that allow 119 

arthropod vectors to tolerate infection. Since arbovirus infection and transmission 120 

by mosquitoes are closely associated with hematophagy, the metabolic adaptations 121 

triggered by the pro-oxidant nature of the blood meal (Sterkel et al., 2017) are likely 122 

to modulate mosquito disease tolerance to arbovirus.   123 

 124 
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What can other insects teach us about disease tolerance mechanisms in 125 

mosquito vectors? 126 

 Disease tolerance has been well studied in plants (Baucom and de Roode 127 

2011) and more recently in animals (Råberg et al. 2009; Ayres and Schneider 2008; 128 

Baucom and de Roode 2011; Vale and Little 2012). In invertebrates, most research 129 

has focused on bacterial or viral infections in Drosophila (Brandt et al. 2004; Ayres 130 

and Schneider 2008; Teixeira 2012) or bacterial infections in the freshwater 131 

crustacean Daphnia (Vale et al. 2011; Vale and Little 2012), and protozoan 132 

infections in Monarch butterflies (Lefèvre et al. 2011; Sternberg et al. 2013). Despite 133 

the obvious differences between the physiology of hematophagous vectors and 134 

other ecologically distinct hosts, there is substantial evolutionary conservation in 135 

immune and tissue repair mechanisms that mediate the response to many infections 136 

(Hoffmann et al., 1999). One potentially helpful approach may therefore be to 137 

leverage work done in other model systems of infection, particularly insects, to 138 

identify potential candidate mechanisms of disease tolerance in mosquito vectors 139 

(Gupta and Vale, 2017; Howick and Lazzaro, 2014; Lissner and Schneider, 2018; 140 

Louie et al., 2016; Sternberg et al., 2012; Troha et al., 2018).   141 

 For example, a recent comparison of transcriptional profiles in Drosophila 142 

infected with a range of bacterial pathogens identified the transcription factor 143 

CrebA which, when knocked down, resulted in reduced tolerance due to increased 144 

cellular stress (Troha et al., 2018). Other work in Drosophila measured tolerance to 145 

bacterial infection in a panel of inbred lines and identified several candidate genes 146 

associated with variation in disease tolerance (Howick and Lazzaro, 2017). Among 147 

them, grainy head (ghd) is shown to be involved in epithelial would repair via 148 

embryonic ERK pathway signaling, and debris buster (dsb) is previously implicated 149 

in autophagy of cellular debris (Han et al., 2014; Howick and Lazzaro, 2017; Mace et 150 

al., 2005).  These two studies highlight that the maintenance of cellular homeostasis 151 

in addition to tissue damage repair may be central to disease tolerance in insects.  152 

 Other work in Drosophila has also shed light on how immune regulation 153 

mechanisms may play an important role in disease tolerance. The epigenetic 154 

regulator of the JAK-STAT pathway G9a, for example, has been identified as being 155 
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important in tolerating systemic infection by Drosophila C Virus, mainly due its role 156 

in downregulating immunopathology during viral infection (Merkling et al., 2015). 157 

Interestingly, G9a appears to have greater effects in male flies, and affects tolerance 158 

not by reducing the overall severity of infection, but by changing the sensitivity of 159 

flies to increasing concentrations of DCV (Gupta and Vale, 2017). Future work may 160 

therefore benefit from focusing on negative regulators of immune responses as key 161 

mediators of disease tolerance.   162 

 163 

Mechanisms of disease tolerance to arbovirus infection in mosquitoes: 164 

 Several immune signaling pathways are activated in mosquitoes during 165 

arboviral infections, such as the antiviral RNAi (Sanchez-Vargas et al., 2009; Olmo et 166 

al., 2018), JAK-STAT (Souza-Neto et al., 2009), Toll (Xi et al., 2008), and IMD 167 

(Barletta et al., 2017) pathways. The inhibition of specific components of immune 168 

resistance, such as RNAi, leads to viral over proliferation and host mortality, 169 

demonstrating that controlling viral growth is essential for mosquito defense (Myles 170 

et al., 2008; Cirimotich et al., 2009). Despite that, antiviral immune resistance 171 

operates at low to moderate levels. Arbovirus titers increase 100 to 1000-fold in 172 

mosquito bodies following an infectious blood meal and Dengue, for example, can 173 

establish persistent lifelong infections (Salazar et al., 2007). This lower state of 174 

immune resistance maintains viral burden under an acceptable homeostatic range 175 

for the vector, but is only possible because mosquitoes rely on complementary 176 

defensive strategies that prevent arbovirus-triggered pathology. Below, we briefly 177 

describe some known mechanisms involved in vector disease tolerance, including 178 

the role of gut microbiota in the modulation of vector competence (Box 2).  179 

 Cellular renewal and homeostasis. Cell death and regeneration determine 180 

disease tolerance in different systems through the modulation of tissue composition 181 

and integrity (Jamieson et al., 2013; Sahoo et al., 2014; Soares et al., 2017). In 182 

mosquitoes, apoptosis impacts vector competence leading to antagonistic outcomes 183 

depending on arbovirus and insect species. Aedes aegypti strains refractory to 184 

Dengue have increased expression of pro-apoptotic genes and higher numbers of 185 

midgut apoptotic cells during infection (Ocampo et al., 2013, Eng et al., 2016) and 186 
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the induction of apoptosis controls Sindbis spread, collectively suggesting mosquito 187 

cell death can restrict arbovirus (O’Neill et al., 2015). Paradoxically, inhibiting 188 

apoptosis through silencing of the initiator caspase Aedronc decreased Dengue virus 189 

load and dissemination (Eng et al., 2016) and activating apoptosis using RNAi-190 

mediated silencing of the anti-apoptotic gene iap1 increased Sindbis infection 191 

(Wang et al., 2012). To compensate for the loss of apoptotic cells that could 192 

compromise tissue integrity, damage caused by chemical or infectious insults trigger 193 

an adaptive response leading to cell regeneration and reestablishment of midgut 194 

homeostasis (Janeh et al., 2017). In the context of Dengue infection, the proliferation 195 

of intestinal stem cells (ISC) is delayed in susceptible A. aegypti Rockefeller strain, 196 

suggesting that midgut cell renewal may regulate vector competence (Taracena et 197 

al., 2018). So far, it is not clear how cell turnover influences mosquito-virus 198 

interactions and we can only speculate that the interplay between infection-induced 199 

apoptosis and the compensatory ISC proliferation is likely to contribute to tissue 200 

integrity, midgut homeostasis and vector disease tolerance. In a recent study, 201 

Thaker and collaborators (2019) compared metabolic alterations induced by Zika in 202 

mosquito versus human cell and revealed an energy depletion that led to AMPK 203 

activation and apoptosis in humans but not mosquito cells, which, if confirmed in 204 

whole insects, could help to explain the tolerance phenotype of infected mosquitoes 205 

(Figure 2).  206 

 Reducing viral pathology. The neutralization of arbovirus-induced pathology 207 

in mosquitoes is essential for disease transmission. Some flavivirus, such as Dengue 208 

and Zika, show neurotropism for mosquito nervous system, including the brain, and 209 

promote behavioral alteration in infected females (Zhang et al., 2010; Lima-Camara 210 

et al., 2011; Gaburro et al., 2018). The neural factor Hikaru genki of A. aegypti 211 

(AeHig) is expressed in the nervous system and promotes disease tolerance by 212 

restricting neuronal apoptosis and arbovirus damage to mosquito brains, 213 

preventing lethal infections following arbovirus-contaminated blood meals (Xiau et 214 

al., 2015).  215 

 Modulation of arboviral persistent infections: Insect cells and mosquitoes 216 

infected with arbovirus, such as Dengue, Chikungunya, Zika and West Nile, produce 217 
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viral DNA fragments (vDNA) that integrate into mosquito genomes, known as 218 

endogenous viral elements (EVEs) (Crochu et al., 2004, Nag et al., 2016 and 2017). 219 

vDNA synthesis is mediated by the reverse transcriptase activity of mosquito 220 

transposons, uses defective viral genomes as templates and is modulated by Dicer-2 221 

(Poirier et al., 2018). EVEs can be either incomplete or contain functional open 222 

reading frames of several arbovirus (Suzuki et al 2017; Palatini et al., 2017) inserted 223 

into a genomic loci rich in transposable elements called piRNA clusters 224 

(Arensburger et al., 2011; Whitfield et al., 2017). Transcripts derived from EVEs 225 

inserted into piRNA clusters activate the piRNA pathway, which is expanded in 226 

Aedes mosquitoes, to generate virus-derived piRNAs (vpiRNAs) that contribute to 227 

mosquito antiviral resistance (Morazzani et al., 2012; Schnettler et al., 2013; Miesen 228 

et al., 2015; Miesen et al., 2016). vDNA also mediates persistent viral infections in 229 

mosquitoes, potentially connecting its synthesis to vector disease tolerance (Goic et 230 

al., 2016) (Figure 2). Aedes albopictus infected with Chikungunya and treated with 231 

AZT, an inhibitor of reverse transcriptase, had reduced vDNA levels and increased 232 

vector mortality following infection without alterations in viral loads, suggesting 233 

that arboviral disease tolerance is dependent on the formation of vDNA (Goic et al., 234 

2016). How vDNA is involved in the establishment of viral persistent infections and 235 

vector disease tolerance awaits further investigations.  236 

 237 

Conclusion and perspectives: 238 

 After feeding on virus-contaminated blood, vector mosquitoes support 239 

intense virus proliferation without major homeostatic imbalances, being tolerant to 240 

arbovirus. Targeting tolerance-promoting pathways have the potential to decrease 241 

vector competence due to reduction in mosquito health and fitness, ultimately 242 

affecting the number of infectious bites and/or vector lifespan. By learning how 243 

mosquitoes tolerate infection we may uncover potential therapeutic targets to 244 

inhibit vector tolerance, inducing mosquito mortality and disrupting arbovirus 245 

transmission.    246 

 247 

  248 
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Box 1 - Measuring tolerance: the relationship between health and pathogen 249 

load 250 

 When comparing two different groups or populations of hosts, a common 251 

approach is to analyze how host health changes with increasing infection loads for 252 

each of the groups of interest (Raberg et al., 2007). In its simplest form, this 253 

relationship may be linear, and host groups showing steep negative slopes for this 254 

reaction norm suffer a loss in health with increasing loads, while hosts with flat 255 

reaction norms are able to maintain health even as pathogen loads increase, and are 256 

therefore relatively tolerant (Figure 1a).   257 

 Depending on the nature of the data, more complex non-linear relationships 258 

are also possible, as has been shown in viral and bacterial infections in Drosophila 259 

(Gupta and Vale, 2017; Howick and Lazzaro, 2014; Louie et al., 2016) and in HIV 260 

infection in humans (Regoes et al., 2014). In these cases, a non-linear logistic model 261 

may be more appropriate (Figure 1b). This type of model goes beyond the analysis 262 

of the rate of health loss with increasing pathogen loads, providing information 263 

about how groups of hosts may differ in various parameters of the response to 264 

infection, including their vigor in the absence of infection, sensitivity to increases in 265 

pathogen load (affecting the lethal load of infection) or the severity of infection, 266 

which determines how sick a host can get during infection, including ultimate death 267 

(Figure 1b) (Louie et al., 2016).  268 

  An important consideration in both linear and non-linear analyses is that 269 

they require both health and pathogen load to be measured on the same individuals 270 

(each data-point in the correlation must correspond to one individual host). This is 271 

often not possible when obtaining these data since it requires destructive sampling 272 

of the individual host, which is often the case in mosquitos and other invertebrates. 273 

In these cases, it is still possible to measure tolerance as the average health of a 274 

group of hosts relative to the average pathogen load of the same group (Figure 1c). 275 

For example, genotype-specific measures of survival and pathogen loads could be 276 

useful to distinguish differences in tolerance among distinct genetic backgrounds of 277 

mosquito, even if survival and pathogen loads are measured in different groups of 278 

insects.   279 
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Figure 1: A tolerance curve is a tool to quantify disease tolerance in distinct 280 

populations. The shape of tolerance curves allows distinct interpretations of host – 281 

pathogen interactions: (a) In linear tolerance curves it is possible to measure vigor 282 

(health of uninfected individuals) and the slope of health loss over an infectious 283 

gradient. However, the relationship between host health and pathogen load is often 284 

not best described by a linear model, and using a sigmoid model as seen in (b) with 285 

the 4-parameter logistic model (vigor, slope, sensitivity and severity) allows a better 286 

analysis of infection dynamics. (c) “Point tolerance” describes different tolerance 287 

properties of populations where health and viral loads were measured in distinct 288 

pools of infected hosts.      289 

 290 

  291 

7

Vigor

Tolerant

Viral load

H
e

a
lt

h

Susceptible

Tolerant

Viral load

H
e

a
lt

h

Susceptible

Vigor

Viral load

H
e

a
lt

h

Slope

Severity se
n
si
ti
vi
ty

(a) (b) (c)



 11 

Box 2 – Gut microbiota and the modulation of vector competence  292 

 The intestinal microbiota of insects plays an important role in several host 293 

processes, including gut cell renewal and growth (Buchon et al., 2009; Shin et al., 294 

2011); nutrient breakdown and supplementation (Warnecke et al., 2007; Hongoh et 295 

al., 2008; Nikoh et al., 2011) and toxin catabolism, among others (Kikuchi et al., 296 

2012; Ping et al., 2007). Given its profound relationship with host physiology, it is 297 

likely that vector microbiota also modulates disease tolerance, as shown in non-298 

insect models (Ripert et al., 2016; Rangan et al., 2016; Ayres, 2016). In the following 299 

paragraphs, we discuss how the microbiota influences pathogen colonization and 300 

vector competence by enhancing or inhibiting the presence of gut pathogens. 301 

 The composition of the vector’s intestinal microbiota is fundamental in 302 

regard to its ability (competence) to transmit pathogens to humans (Ramirez et al. 303 

2014, Bahia et al., 2014). This was illustrated in studies with Anopheles gambiae and 304 

A. aegypti where the removal of bacteria from the insect’s midguts with antibiotics 305 

increased parasitemia with Plasmodium spp. and dengue virus (Dong et al., 2009; Xi 306 

et al., 2008) through different mechanisms (Saraiva et al., 2016). The microbiota 307 

shapes peritrophic matrix formation and influences innate immune system 308 

activation (Rodgers et al., 2017). The microbiota proliferation after blood meal 309 

induces the IMD immune pathway and antagonizes virus infection (Barletta et al., 310 

2017). The caudal transcription factor, a negative regulator of IMD, facilitates 311 

microbiota tolerance by down-regulating REL2-dependent expression of 312 

antimicrobial peptides, specifically in the gut, thereby enabling microbiota 313 

establishment (Clayton et al., 2013).  314 

The insects´ gut Enterobacter sp. bacterium secretes reactive oxygen species 315 

that kills Plasmodium in the gut lumen of Anopheles mosquitoes (Cirimotich et al., 316 

2011). Chromobacterium sp. secretes a neutral protease and an aminopeptidase that 317 

degrade the viral envelope (E) protein and thus inhibit viral attachment and 318 

subsequent infection of A. aegypti cells (Ramirez et al., 2014; Saraiva et al., 2018a). 319 

The Chromobacterium sp. also has in vivo and in vitro anti-Plasmodium properties 320 

through secretion of romidepsin (Ramirez et al., 2014; Saraiva et al., 2018b).  321 
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 By contrast, the microbiota may instead facilitate pathogen replication. The 322 

susceptibility of A. aegypti to Dengue virus infection increases significantly after 323 

Serratia odorifera gut colonization (Apte-Deshpande et al., 2012). Similarly, the 324 

Penicillium chrysogenum fungus makes A. gambiae more susceptible to Plasmodium 325 

infection through the upregulation of mosquito ornithine decarboxylase gene that 326 

sequesters arginine, a substrate for the microbicidal radical nitric oxide production 327 

(Angleró-Rodríguez et al., 2016). In a similar fashion, Talaromyces sp. isolated from 328 

field-collected A. aegypti facilitates Dengue virus infection by down-regulating 329 

digestive enzyme genes and trypsin activity (Angleró-Rodríguez et al., 2017). The 330 

introduction of Serratia marcescens in antibiotic-treated A. aegypti facilitates dengue 331 

virus dissemination and transmission through secretion of enhancin, which digests 332 

mucins of the mosquito’s mucus layer (Wu et al., 2019).  333 

 The contribution of microbiota for the host’s disease tolerance response is 334 

still poorly explored and future work is needed to elucidate its influence in insect 335 

immune modulation, vectorial competence and pathogen transmission. 336 

 337 

  338 
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  339 

Figure 2: Possible tolerance mechanism operating in mosquito midgut during the 340 

first days following an infectious blood meal. Mechanisms driving mosquito disease 341 

tolerance to arbovirus infection may involve pathways that prevent molecular 342 

damage (damage control) and pathways that lead to organelle, cell and tissue repair 343 

once damage has occurred. It is possible that these pathways are also active in other 344 

tissues, such as brain, flight muscle, fat body, salivary glands and ovaries. Virus 345 

infection and replication in midgut epithelium will likely drive an adaptive tolerance 346 

response involving a balance between cell death and intestinal stem cell (ISC) 347 

division in order to keep gut integrity and homeostasis. At the same time, cellular 348 

energy reserves acting as stress sensors promote metabolic adaptations and virus-349 

derived DNA (vDNA) is produced and promotes disease tolerance during infection. 350 

Several other mechanisms such as microbiota-induced tolerance are possible but, so 351 

far, still lack empirical evidence.   352 

 353 

 354 

 355 
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 356 

Box 3 – Outstanding questions in disease tolerance of arbovirus vectors 357 

- How much do vectors vary in tolerance phenotypes within natural mosquito 358 

populations? 359 

- How do mosquitos tolerate different viral pathogens? 360 

- How do cellular renewal and vDNA contribute to vector disease tolerance? 361 

- Are there fitness costs to the mosquito in tolerating viral infection (reduced 362 

fecundity/lifespan)? 363 

- Is there a role for mosquito gut microbiota in the ability to tolerate arbovirus 364 

infections? 365 

 366 
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