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Abstract:  
 
The Endoplasmic Reticulum (ER), a network of membranous sheets and pipes, supports functions 

encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the 

cell1,2. Molecular mobility through the ER network enables these functionalities, but diffusion 

alone is not sufficient to explain luminal transport across supramicron distances. Understanding 

the ER structure-function relationship is critical in light of mutations in ER morphology regulating 

proteins that give rise to neurodegenerative disorders3,4. Here, super-resolution microscopy and 

analysis of single particle trajectories of ER luminal proteins revealed that the topological 

organization of the ER correlates with distinct trafficking modes of its luminal content: with a 

dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle 

trajectory orientations resolved over time revealed an alternating current of the ER contents, whilst 

fast ER super-resolution identified energy-dependent tubule contraction events at specific points 

as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in 

the ER has implications for timely ER content distribution throughout the cell, particularly 

important for cells with extensive ER-containing projections such as neurons. 
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The Endoplasmic Reticulum (ER) is a contiguous network of membranous sheet-like 

reservoirs and tubes extending throughout the cell. Maintained by membrane-shaping proteins1,2, 

this morphology supports the distribution of ER luminal content to distant sites. ER-content 

distribution rate affects the efficiency of ER-mediated intracellular connectivity. Perturbation of 

this fundamental process may contribute to diseases caused by mutations in ER-shaping proteins3,4. 

Measurements of ER-luminal protein mobility using fluorescence recovery after photo-bleaching 

(FRAP) have previously uncovered an energy dependence that is difficult to reconcile with passive 

diffusion5,6. An increase in luminal crowding due to the incapacitation of ATP-dependent ER 

chaperones has been suggested as a plausible explanation for this effect (direct crowding 

measurements here do not detect such an effect). Addressing this paradox remained challenging 

since FRAP measurements report on bulk mobility, and do not inform as to the nature of forces 

driving mobility at a molecular level. A passive diffusion model for luminal transport is also 

challenged by the notion that traversal time of random walking molecules increases exponentially 

with distance. This poses kinetic limits for material exchange in an expanded ER network. Recent 

advances in super-resolution microscopy afford a basis for development of a single particle 

tracking approach to provide a detailed description of molecular motion in the ER lumen, with 

potential to generate a wealth of information regarding directionality and velocity from a large 

number of simultaneous single-molecule displacement events. Using live cell super-resolution 

microscopy, we visualised and analysed single molecule trajectories traversing tubular ER, and 

the organelle’s real-time morphological dynamics.  
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 First we examined, in our experimental system, the energy dependence of luminal protein 

mobility, previously demonstrated for green fluorescent protein (GFP) using FRAP6. Escape-rate 

of photo-convertible fluorescent protein (Dendra2-ER) from a region of activation was attenuated 

by ATP depletion (Fig. 1a). This may reflect either an increase in resistance to motion or a decrease 

in active transport of proteins upon energy starvation. The former is contradicted by measurements 

of ER crowdedness, using a sensitive FRET-based probe7, that, over a broad range of expression 

levels, remained unaltered by ATP-depletion (Fig. 1b – d, Supplementary Fig. 1a). Furthermore, 

displacement of Dendra2 proteins (initially localized as a “packet” in a small volume of the tubular 

ER that had been subjected to a colour-photoswitching laser pulse) occurred with variable speed 

and had a conspicuous unidirectional component (Fig. 1e, Supplementary Video1). These features 

are inconsistent with Brownian motion and suggest, instead, active transport. 

 To characterize motion in the ER lumen we performed real-time single particle tracking 

(SPT) in live cells, acquiring trajectories at optical super-resolution. Imaging at 56 Hz, we recorded 

single molecule fluorescent signals from functional (Halo-tagged ER luminal chaperone, 

Calreticulin, Crt) and inert (ER targeted HaloTag) proteins, both sparsely labelled with a 

fluorescent ligand (chloroalkane-Tetramethylrhodamine, TMR). Brightness and photostability of 

the TMR ligand enabled tracking single particles over longer trajectories than genetically-encoded 

fluorophores (Supplementary Fig. 1b), thus establishing spatio-temporal correlations in motion 

patterns over extended periods of time. This approach offered information on directionality and 

instantaneous velocity at a single molecule level, not available in bulk methods such as FRAP. By 

implementing a single molecule localisation algorithm, images reconstructed from the SPT series 

revealed a pattern typical of the ER network, confirming ER-localisation of the HaloTag-Crt and 

washout of the unbound dye (Fig. 2a & b, Supplementary Videos 2–4).  
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 Trajectories were generated from single-molecule time series by sequentially implementing 

spot detection and tracking algorithms8,9. ER geometry constrains particle movement to a narrow 

tubular network, which limits overlapping trajectories, contributing to the tracking algorithm’s 

ability to faithfully trace many molecules simultaneously. Resulting trajectories reconstruct a map 

recognizable as a pattern of ER tubes and their connecting reservoirs (Fig. 2c), reflecting tracking 

fidelity. Notably, spatio-temporal particle distributions were non-uniform, with higher time-

integrated abundance in the tube-connecting reservoirs (Fig. 2d). This heterogeneity correlated 

with spatial distribution of instantaneous velocities, revealing distinct subgroups: relatively slow-

moving particles predominantly detectable in segments of trajectories mapped to the nodes and 

particles with relatively high and variable velocities mapped to node-connecting tubes (Fig. 2c). 

These characteristics could be observed for two different markers (Calreticulin and HalotagER) 

and three different cell types (HEK 293T, COS-7, SH-SY5Y, Supplementary Table 1). The long, 

single-tailed velocity distribution observed (histogram, Fig. 2c) is incompatible with Brownian 

motion (Fig. 2c, modelled by solid line). Furthermore, ATP depletion led to selective loss of the 

fast-moving population (Fig. 2e). These observations suggest that diffusive motion is manifest by 

the slow-moving particles in the tube-connecting reservoirs (nodes), while the rapidly-moving 

particles in the tubes are subjected to an ATP-dependent propulsive force, resulting in an ER 

luminal flow. The displacement profile observed fits well a bi-modal distribution of instantaneous 

velocities (Fig. 2c, modelled by dashed line). 

 Next we quantified temporal coordinate changes of HaloTag-Crt by analysing SPT data 

using the overdamped limit of the Langevin model (where velocity is described as the sum of 

diffusional and drift forces, and motion parameters are estimated from local statistics of the 

displacement, see Methods)10-13. Motion is described by the stochastic model (a sum of directed 
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and diffusional motion terms):  (1) where  is Brownian motion. The 

source of the noise  is the ambient thermal agitation, while the drift term b represents transport 

in tubules and D is the effective local diffusion. This analysis (see Supplementary Note 1) allows 

estimating D and b from large numbers (~ 104 per cell acquisition) of single particle trajectories. 

 The global nature of this statistical approach considers not only particle displacement speed 

but also direction patterns, extracted from a large number of trajectories repeatedly traversing the 

same regions, thereby unmixing the contribution of Brownian and deterministic forces. This 

computation identifies a slow diffusional (D=0.19+/-0.13 µm/s2) component that maps 

predominantly onto the nodes (Fig. 2f). The relatively fast movement of internode particles 

required an additional component to account for their directionality and persistence, consistent 

with a propulsive force with normal distribution of velocity (22.9+/-6.92 µm/s, Fig. 2g). The super-

diffusive nature of particle motion in ER tubules was further confirmed by analysis of time-

averaged mean squared displacement (MSD) of SPT. MSD described as ~ tα, where the anomalous 

exponent α defines motion as sub-diffusive if a<1, Brownian/diffusive if a=1 and super-diffusive 

if a>1. Conducted on the entire ensemble of trajectories, the MSD analysis revealed a broad range 

of particle behaviours (0<a<1.5, Fig. 2b), whereas the same analysis restricted to trajectory 

fragments located in nodes revealed clearly confined diffusion dynamics (a<0.8, Supplementary 

Fig. 2c). Trajectories of particles moving outside the nodes exhibited super-diffusive dynamics 

(a>1, Supplementary Fig. 2d, Video 3). These results are consistent with the active motion mode 

identified in analysis of Figure 2. 

 Similar observations were made in Green Monkey kidney (COS-7) and Human 

neuroblastoma (SH-SY5Y) cell lines, attesting to their broad validity in describing ER flow 

dynamics and its spatial organization (Supplementary Fig. 3, Table1, Video 2). Measurements of 
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the motion parameters of a lower mass ER-localised protein, HaloTag-KDEL, showed similar 

values to those observed with the tagged Crt (Supplementary Fig. 3, Table1). Flow velocity was 

slightly higher in COS cells than in HEK-293T and SH-SY5Y cells. The behaviour of the luminal 

ER markers, HaloTag-KDEL and Calreticulin, contrasted with that of a membrane-associated 

analogue of the latter, mEOS2-Calnexin: its velocities were distributed relatively homogeneously 

through the ER network (Fig. 3a, b), lacked the thick tail of high values in distribution of 

instantaneous velocities and fit well to a purely diffusional model (Fig. 3a-d). 

To establish whether recently reported ER macrostructure motion characteristics14 are 

reflected in the SPT analysis, we focused on their numerical parameters. Motion of ER tubules  

characterized by their relatively slow transverse oscillation (4Hz, with an amplitude < 50 nm, 

which translates to  velocity  <0.2 µm/s14),  does not significantly contribute to the relatively fast 

velocities of flow-assisted marker particles moving along the tubules (27-42 µm/s, Supplementary 

Table 1). Junction fluctuations contribute a similarly insignificant component to the diffusional 

motion inside the junction since the diffusion coefficient calculated from tracking of whole 

junctions was 69 times slower than the mean diffusion coefficient computed for single molecules 

(14, Supplementary Fig. 4, and Video 5). Furthermore, contribution of tubule growth to single 

particle trajectories was found to be negligible, with a mean percentage of tubules growing at any 

given time of 0.14 +/- 0.04 % (Supplementary Videos 5-7).  

Consistently, considering trajectory motion as a purely diffusive process yielded an 

apparent diffusion coefficient of 1.13 µm2/s (Fig. S2a) similar to that previously estimated by 

FRAP5, 15, 16.   

 Though most individual trajectories visited only a limited number of nodes (Fig. 4a), an 

Oriented Network Graph analysis, which identifies directly or proxy interconnected junctions 
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through trajectory directions17 revealed that, regardless of their starting point, particles have the 

potential to visit almost the entire ER network (Fig. 4b; the disconnected periphery is likely 

contributed by signals from neighbouring cell(s)). This analysis is consistent with the notion that 

the ER network maintains a luminal continuum. The ER appeared to be in a state of equilibrium, 

with nodes, on average, connected by an equal number of inward and outward trajectories (Fig. 4c 

& d). These findings are consistent with an interconnected system of flows that preserves the 

content across the ER.  

 Closer scrutiny of the directionality of individual tube-traversing particles suggested a 

pattern whereby the direction of visible flow alternates with variable frequency (switching on 

average every 4 seconds, maintained for up to 14 seconds Fig. 5a & b); and particles accelerated 

periodically following their exit from a node, reaching brief velocity peaks that lasted up to 120 

ms (Fig. 5c & d). Intervals between velocity peaks and flow-directionality alternations were 

distributed stochastically (Fig. 5b, d), suggesting that flow-inducing events (e.g. transient tubule 

contractions, discussed below) are not produced by synchronized oscillators and are therefore not 

centrally coordinated. However, we cannot exclude the contribution of synchronization processes 

whose phase is lost, as trajectories are recorded asynchronously. Note that temporal profiles of 

directionality are not available using low spatio-temporal resolution approaches (e.g. FRAP or 

photoconversion pulse-chase, Fig. 1e). 

 The oscillatory luminal motion suggested the possibility of nanoperistalsis-like18 propulsion, 

attainable by tubule contractions. To test this, we obtained high-resolution time-series images of 

the ER tube structure of live cells by fast Structured Illumination Microscopy (SIM)14,19,20. These 

revealed transient, asynchronous constriction of the tubes at specific locations (Fig. 5e, 

Supplementary Fig. 5a, b; Video8 & 9), consistent with a role for tube constriction in generating 
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flow. Constriction-driven propulsion is also consistent with the observed velocity values and 

variation of packets of photo-converted Dendra2 during their deterministic traversal of the tubular 

ER (Vmax = 19.9 µm/s, Fig. 1e). Furthermore, frequency of contraction events decreased four-fold 

upon ATP depletion (Fig. 5f, Supplementary Video 10). It is expected that following an individual 

contraction event (with a frequency of hundreds of milliseconds), both deterministic and 

acceleratory displacement of multiple particles would be detected, as SPT acquisition operates at 

approximately ten times the contraction frequency. Assuming uncoordinated contractions 

throughout the tubular network, consecutive contractions have the same probability to preserve or 

invert the direction of the next set of detectable SPT events (consistent with observed distribution 

of directionality preservation time, Fig. 5b).  

 The notion that tubule contractions generate high-velocity peaks in luminal particles is 

supported by the fact that their temporal distributions are both Poissonian (Fig. 5d & g), indicating 

compatible physical processes. The larger time constant of contractions (~900ms) compared to 

that of high-velocity peaks (~80ms) is expected since several contraction points may contribute to 

the particles’ acceleration incidence. 

  Furthermore, a physical model simulating forces resulting from tubule contraction, and 

based on their empirical characteristics (Fig. 5h and Supplementary Note1), predicts flow 

velocities of 10-40 µm/s, in agreement with the high-velocities observed in SPT (Fig. 5c). Notably, 

the contraction frequency is low enough to avoid coinciding proximal contractions that may cancel 

the local flows (probability of simultaneous contractions of two points = 0.022, calculations in 

Supplementary Note 1). Whilst the existence of a mechanism for spatio-temporal coordination of 

the contraction events cannot be ruled out, our findings indicate that an uncoordinated system, 

inducing fast local currents with alternating directionality inside the tubular network, is sufficient 
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to ensure a rapid luminal content homogenization/distribution and thereby overcome a critical 

kinetic limitation of passive diffusion as a mechanism for ER content mixing in large cells.  

 Localised contraction of ER tubules, leading to ER deformation, was observed during 

calcium manipulation21  (Supplementary Fig. 5c), or phototoxicity (Supplementary Fig. 5e and 

Video 11), both reversible processes affecting ER morphology (Supplementary Fig. 5e). These 

super-resolved images of the ER’s structural dynamics under severe experimental perturbation 

highlight a potential for ER tubes to contract, revealing that fragments of the perturbed ER that 

had lost their tubular structure displayed characteristically slow-velocity diffusional motion 

(Supplementary Fig. 5d). Other physiological membrane dynamic processes involving molecular 

motors, vesicular fusion and budding, network oscillation14 and even tube elongation/withdrawal 

may also contribute to flow and warrant further investigation. 

Regardless of its origin(s), the alternating luminal currents described here are well suited 

to serve as a mixing device, enhancing distribution of ER content throughout the cell. Given that 

diffusion-driven connectivity (matter exchange rate) decreases exponentially with distance, it is 

expected that the active process described here would be especially important in cells with 

extensive ER projections, such as motor neurones. It is therefore tempting to speculate that 

perturbed luminal flow might contribute to diseases such as hereditary spastic paraplegia, 

associated with defective ER membrane-shaping proteins3,4,22.  
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Figure Legends: 

Fig. 1. ATP depletion affects ER mobility without altering luminal crowdedness.  

(a) Trace of time-dependent decay in the intensity of the fluorescence signal from an ER-localised 

photoconvertible protein, Dendra2-ER, after a pulse of photo-converting illumination delivered to 

a small patch of untreated or ATP-depleted COS7 cells. Inset denotes mean ± SEM, (n=5 traces 

per condition) of fluorescence decay half time, reflecting the probe’s escape from the 

photoconversion area.  

(b) Fluorescence intensity (left) and colour-coded fluorescence lifetime (FLT) images (right) of 

COS7 cells transfected with an ER-localised molecular crowding probe7. FLT distribution within 

imaged cells is displayed in colour-coded histograms with mean FLT noted (in picoseconds, ps, 

right). Cells were left untreated (UNT), ATP depleted, or treated with hyper-osmotic (Hyper Os.) 

or hypo-osmotic buffers that induce cell shrinking or swelling to obtain maximal and minimal 

crowding values, respectively. Shown are characteristic images observed in three independent 

repeats. 

(c) Bar diagram of FRET-donor FLT values measured as in (b) (mean values ± SD, n=22 

independently sampled cells).  

(d) Bar diagram of relative intracellular ATP concentration measured with FRET-based ATP-

probe (A-Team)23 in cells untreated or ATP depleted as in (a & b). Minimum and maximum values 

represent the probe readings in ATP depleted or saturating conditions respectively, imposed in 

semi-permeabilised cells. Shown are mean values ± SD, n=10 independently sampled cells.  

(e) Images of COS7 cell expressing Dendra2. A brief pulse of illumination photoconverted 
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Dendra2 from green to red in a restricted region of the ER. The progression of the photoconverted 

packet of proteins is revealed by the time series and summated in the bottom panel with its velocity 

colour coded.  
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Fig. 2. Characteristics of single particle displacement tracked in the tubular ER lumen. 

(a) Image reconstructed from single molecule localizations of TMR-labeled Halo-tagged 

Calreticulin (Crt), in HEK-293 cells, rendered with a molecular density colour code. 

(b) Skeletonization view of image in (a). Shown are representatives of n=3 independent 

experiments. 

(c) Single molecule trajectories generated using particle-tracking algorithm from time series of 

image (a)), color-coded according to instantaneous velocity distribution shown in histogram. 

Overlaid traces: velocity distribution simulated assuming exclusively diffusion-driven motion 

(solid line, using apparent D from (f)), or combination of diffusion and flow (using D and flow 

rate from f & g). Inset: cumulative distribution, Kolmogorov-Smirnov test of observed vs. 

expected distributions.  

(d) Density map computed for grid of square bins (sides of 0.2 µm) imposed on particle 

displacement map. Ellipses mark boundaries of higher density regions (correspond to tube-

connecting reservoirs/junctions).  

(e) Histograms of instantaneous velocity frequency distributions of SPT from a cell before/after 

ATP depletion (as in Fig. 1 a-c). Inset: violin plot presenting the medians (red bars) and density 

(grey) of the distributions. A two-sided Mann-Whitney U-test was used to compare median of each 

pair of distributions (*** p-value < 1e-3), p(0-20 min)=1e-80, p(20-40 min)=9.889e-64, p(0-40 min)=1e-80; 

n=20526, n=14591 and n=10108 trajectory displacements respectively. 

(f) Diffusion map extracted from the empirical estimator of the Langevin equation (1) and 

computed from a square grid as in d. Inset: distributions of the diffusion coefficients inside nodes 



ELF_4.0 

 15 

(AVG +/- SD=0.19 +/- 0.13, n=226 nodes). 

(g) Flow map computed by averaging non-Brownian velocity jumps of particles moving between 

pairs of neighbouring nodes identified in (d) and color-coded according to the inset histogram. 

Inset: distribution of average instantaneous velocity between pairs of neighbouring nodes (n=705  

node-pairs; AVG +/- SD=22.90 +/- 6.92). 

Raw source single molecule time series and image-reconstruction are shown in Supplementary 

Video 2.  
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Fig. 3. Statistics of Single Particle trajectories recorded from the ER membrane. 

(a) Single molecule trajectories of mEOS2-calnexin expressed in HEK-293 cells generated as in 

Figure 2, color-coded according to instantaneous velocity distribution Inset: Instantaneous velocity 

distribution histograms computed from the displacements extracted from the trajectories and 

overlaid by the expected distribution for a purely diffusive motion with the diffusion coefficient 

extracted from (d). 

(b) Density map computed for a grid of square bins (sides of 0.4 µm) imposed on the particle 

displacement map. 

(c) Diffusion map extracted from the empirical estimator of the Langevin equation (1, methods) 

and computed from the same square grid as in (b).  

(d) Histograms of diffusion coefficients computed from individual square bins, pooled from two 

cells, for the entire domain as presented in (c). The red curve on top of the diffusion histogram 

corresponds to a fit (Trust Region Reflecting algorithm) to a Gaussian distribution with !"=

0.42	!)*/,, -"= 0.12	!)*/, and a determination coefficient /*= 0.986. Descriptive statistics 

given as AVG +/- SD.  
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Fig. 4 Properties of ER luminal trajectories’ directionality.  

(a) Number of nodes visited by individual particles. Trajectories map, as in Figure 2, colour-coded 

according to the number of nodes visited by a particle; and the distribution of the number of nodes 

visited by each individual trajectory (excluding trajectories visiting 0 node). 

(b) Vectorial representation of the ER network from Figure 2 analysed using Oriented Network 

Graph analysis, to assess the direct or proxy, uni/bi-lateral trajectory-connectivity of the nodes, 

assigning single colour for each interconnected area. Note a strong connected component resulting 

in a monochromatic appearance of almost the entire network. Arrows denote prevalent 

displacement directionality (detected in 18% of tubes), defined as such if steady-state ratio of flow 

in one direction vs. the total flow exceed 0.75. Dashed links represent flows whose directionality 

could not be determined due to insufficient number of displacement events. 

(c) Distribution histogram of the number of outward (efferent) and inward (afferent) directed 

branching for individual nodes. Efferent branches were defined as the number of nodes, reached 

by the outward trajectories originating in the examined node, in the time-integrated map; 

accordingly, afferent branches reflect the number of nodes-of-origin for the trajectories arriving at 

the examined node. 

(d) Distribution of the fraction of exiting trajectories for each node. 

All values are given as AVG ± SD. 
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Fig. 5. Dynamics of ER luminal flow correlated with tubule contractions. 

a. Analysis of particle trajectories’ directionality. Tubular junctions/nodes denoted by orange 

ellipses; grey lines denote all particle trajectories. Trajectories connecting two nodes indicated as 

A and B are colour coded according to their direction either in blue, denoting travel from A to B, 

or red for travel from B to A. Lower graph represents the temporal pattern of traversal-

directionality. Shown is representative of n=108 node-pairs.  

  

b. Distribution of time periods of unidirectional inter-node displacement.  

 

c. Plots of instantaneous particle velocities fluctuations. Velocities of particles following departure 

from nodes and traveling along tubules (between nodes, red), and those of particles residing within 

nodes (black). Solid lines represent mean values for all trajectories, shaded regions represent SD 

of total sample size: n=111 internode and n=140 intranode trajectory displacements. 

  

d. Analysis of time duration TH of high-velocity (3 > 20	!)/,) peaks (left) and time interval TL 

between high-velocity peaks. Red line represents an exponential fit (/* = 0.998). 

 

e. High-speed Structured Illumination Microscopy (SIM) super-resolved images of the tubular ER 

in live COS7 cells stained with an ER membrane dye (ER Tracker-Green). Images were acquired 

in 54 ms intervals and processed as described in Methods. The resulting SIM reconstructions were 

colour-coded according to intensity. The magnified area shows the contours of ER tubules at 

higher magnification. Arrows denote positions where transient contraction events occur 

repeatedly. Shown are frames from a time series measurement presented in full in supplementary 



ELF_4.0 

 19 

Video S8. Tubule contractions are better visualized in COS7 cells, but detectable in HEK-293 cells 

too (Fig. S5). Shown is representative of n=5 independent experiments. 

f. Box plot of tubule contraction frequencies extracted from high-speed SIM time series as shown 

in (e) before and after ATP depletion. Red line – median, boxes’ bottom/top edges – the 25th and 

75th percentiles respectively, whiskers – extreme data points. ***: Two-sided Mann-Whitney U-

test p=1.7019e-7, n=20 ER tubules. 

g. Distributions of contraction duration, intervals and lengths from SIM videos as in (e) and Fig. 

S5. Red curves: exponential (left and middle) and Gaussian (right) fits (/* = 0.988 , /* = 0.969,  

/* = 0.937 respectively). 

h. Schematic representation of the model for estimating tubule contraction-induced particle 

velocity.   

All values are given as AVG ± SD for noted n.



ELF_4.0 

 20 

References: 

1. Powers, R.E., Wang, S., Liu, T.Y. & Rapoport, T.A. Reconstitution of the tubular endoplasmic reticulum 
network with purified components. Nature 543, 257-260 (2017). 

2. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M. & Rapoport, T.A. A class of membrane proteins shaping 
the tubular endoplasmic reticulum. Cell 124, 573-586 (2006). 

3. Hubner, C.A. & Kurth, I. Membrane-shaping disorders: a common pathway in axon degeneration. Brain : a 
journal of neurology 137, 3109-3121 (2014). 

4. Blackstone, C., O'Kane, C.J. & Reid, E. Hereditary spastic paraplegias: membrane traffic and the motor 
pathway. Nature reviews. Neuroscience 12, 31-42 (2011). 

5. Dayel, M.J., Hom, E.F. & Verkman, A.S. Diffusion of green fluorescent protein in the aqueous-phase 
lumen of endoplasmic reticulum. Biophysical journal 76, 2843-2851 (1999). 

6. Nehls, S. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nature cell biology 
2, 288-295 (2000). 

7. Boersma, A.J., Zuhorn, I.S. & Poolman, B. A sensor for quantification of macromolecular crowding in 
living cells. Nature methods 12, 227-229, 221 p following 229 (2015). 

8. Cheezum, M.K., Walker, W.F. & Guilford, W.H. Quantitative comparison of algorithms for tracking single 
fluorescent particles. Biophysical journal 81, 2378-2388 (2001). 

9. Chenouard, N. et al. Objective comparison of particle tracking methods. Nature methods 11, 281-289 
(2014). 

10. Schuss, Z. Theory and Applications of Stochastic Processes. Appl Math Sci 170, Cover1-U4 (2010). 
11. Hoze, N. & Holcman, D. Residence times of receptors in dendritic spines analyzed by stochastic 

simulations in empirical domains. Biophysical journal 107, 3008-3017 (2014). 
12. Hoze, N. et al. Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by 

superresolution analysis of live cell imaging. Proceedings of the National Academy of Sciences of the 
United States of America 109, 17052-17057 (2012). 

13. Langevin, P. The theory of brownian movement. Cr Hebd Acad Sci 146, 530-533 (1908). 
14. Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in 

the peripheral ER. Science 354 (2016). 
15. Lai, C.W., Aronson, D.E. & Snapp, E.L. BiP availability distinguishes states of homeostasis and stress in 

the endoplasmic reticulum of living cells. Molecular biology of the cell 21, 1909-1921 (2010). 
16. Snapp, E.L., Sharma, A., Lippincott-Schwartz, J. & Hegde, R.S. Monitoring chaperone engagement of 

substrates in the endoplasmic reticulum of live cells. Proceedings of the National Academy of Sciences of 
the United States of America 103, 6536-6541 (2006). 

17. Tarjan, R. Depth first search and linear graph algorithms. Siam Journal on Computing 1 (1972). 
18. Nadeem, S. & Maraj, E.N. The mathematical analysis for peristaltic flow of nano fluid in a curved channel 

with compliant walls. Applied Nanoscience 4, 85-92 (2014). 
19. Young, L.J., Strohl, F. & Kaminski, C.F. A Guide to Structured Illumination TIRF Microscopy at High 

Speed with Multiple Colors. Journal of visualized experiments : JoVE (2016). 
20. Kner, P., Chhun, B.B., Griffis, E.R., Winoto, L. & Gustafsson, M.G. Super-resolution video microscopy of 

live cells by structured illumination. Nature methods 6, 339-342 (2009). 
21. Subramanian, K. & Meyer, T. Calcium-induced restructuring of nuclear envelope and endoplasmic 

reticulum calcium stores. Cell 89, 963-971 (1997). 
22. Lo Giudice, T., Lombardi, F., Santorelli, F.M., Kawarai, T. & Orlacchio, A. Hereditary spastic paraplegia: 

clinical-genetic characteristics and evolving molecular mechanisms. Experimental neurology 261, 518-539 
(2014). 

23. Imamura, H. et al. Visualization of ATP levels inside single living cells with fluorescence resonance 
energy transfer-based genetically encoded indicators. Proceedings of the National Academy of Sciences of 
the United States of America 106, 15651-15656 (2009). 

24. Gustafsson, M.G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by 
structured illumination. Biophysical journal 94, 4957-4970 (2008). 

 



Methods 

1 Intra-vital and fixation cell microscopy 
1.1 Cell culture, transfections and expression constructs 
COS7 (RRID:CVCL 0224), HEK 293 cells were cultured in Dulbecco’s Modified Eagle’s 
medium (DMEM) supplemented with 10% foetal calf serum and 1X non-essential amino acids 
(M7145 -SIGMA, Gillingham, Dorset, UK). SHSY-5Y cells were cultured in MEM/F12 
medium supplemented with 15% foetal calf serum. Transfections were performed using the 
Neon Transfection System (Invitrogen, Paisley, UK) applying 1.5g of ATeam or crowding 
probe DNA to 3.10# cells. An expression vector encoding a cytosol localised crowding probe7 
was modified to encode an endoplasmic reticulum localised probe by N-terminal addition of 
mouse preprotrypsin signal sequence and C-terminal addition of a KDEL motif by Gibson 
assembly. Description of plasmids used in this study are presented in Supplementary Table 2. 

 

1.2 Photo-conversion microscopy 
Photo-conversion pulse chase experiments were performed using Leica SP8 confocal 
microscope. Images were acquired using frame size of 256 × 256 pixels to allow imaging at 9 
frames/sec rate, in Green (488 nm excitation, 510 - 530 nm emission) and Red (561 nm 
excitation, 590 - 620 nm emission) channels. Photo-conversion illumination (405 nm) was 
introduced at frame 20 in a region of interest for duration of 20 frames, using On The Fly 
FRAP acquisition mode (enabling image recording during the photoconverting illumination). 
Normalized intensity of the Red channel at the region of photo-conversion was plotted as a 
function of time post-photoconversion, and fitted to a mono-exponential decay function, to 
extract the decay $%/', that was used as an estimator of Dendra2-ER mobility. 

 

1.3 Cell manipulations and Fluorescence Lifetime Imaging 
Microscopy (FLIM) 
FLIM was carried out as previously described25,26, using a pulsed (sub10ps, 20-40MHz) 
supercontinuum (430-2000nm) light source (SC 450, Fianium Ltd., Southampton, UK). An 
acousto-optic tunable filter (AA Optoelectronic AOTFnC-VIS) was used to define the 438 nm 
excitation wavelength for both the ER-crowding probe and ATeam ATP sensor. Emitted light 
was collected using a 470/20nm emission filter and detected by a fast photomultiplier tube 
(PMC-100, Becker & Hickl GmbH, Berlin, Germany). Data were processed using SPCImage 
(Becker & Hickl GmbH), fitting a monoexponential decay function. Osmosis-driven changes 
in cell volume were induced by addition of 0 mM NaCl (hypo-osmotic) or 500 mM NaCl 
(hyperosmotic) supplemented Hanks Balanced Salt solution (2.5mM KCl, 1.2 mM CaCl2, 0.5 



mM MgCl2, 5 mM glucose, 10 mM HEPES pH 7.5) to a final ratio of 1:1 with DMEM (final 
osmolalities of 0.152 osmol/kg and 0.609 osmol/kg respectively). ATP depletion was achieved 
by incubating the cells in the presence of NaN3 (0.05% w/v) and 2-deoxi-glucose (20 mM) for 
2 hours prior to imaging; cells preserving the tubular ER pattern were selected upon 
treatments. 

 

1.4 Single particle localisation and tracking (SPT) 
Cells were transiently transfected with vectors encoding HaloTag (Promega) targeted to the ER 
by N-terminal the preprotrypsin signal sequence and a C-terminal retrieval signal (SS-
HaloTag-KDEL); or Halo-Tag Calreticulin. 24 hours after transfection, cells were labelled 
with 0.5 nM cell-permeant HaloTag TMR ligand (tetra-methyl-rhodamine, Promega G8251) 
for 10 minutes, followed by 3 washes with label free medium; and imaged with 18 ms 
exposure on Elyra Super Resolution microscope (Zeiss) using α-Plan Apochromat X100 oil, 
1.46C na objective; at 561/570-620 nm excitation/emission, in HiLo (pseudo-TIRF) mode 
using EMCCD iXON DU897 camera (Andor). The obtained single particle image series (at 
least 2000 frames) were processed using the PALM image reconstruction module or particle-
tracking module at the instruments software (Elyra Zen edition, Zeiss). Trajectory generation 
fidelity was verified using the ICY software27 version 1.9.5 and Imaris software version 8.4.1 
(Bitplane). 

The tracking algorithms was set to identify diffraction-limited spots as particles if their signal 
to noise ratio was > 4 and the spot does not exceed 9 pixels in diameter; then to identify the 
centers of spots to refine the positioning of the particle beyond the diffraction limit. The 
algorithm terminated trajectories if the signal disappears for 1 frame (linking is not permitted if 
particles leave the focal plane, blink etc.). 
 
The tracking stage produces () two-dimensional trajectories *% …	*-.  each possessing /0 
points: *01$23 = [60%1$23, 60'1$23] (1 ≤ ; ≤ (), 0	 ≤ <	 < /0). Trajectories containing less than 
three points were discarded from the analysis. For each pair of successive points ($2?%, $2) of a 
trajectory ;, we defined the displacement as: ∆*0($) = 	*01$2?%3 − 	*0($2). See Supplementary Note 
1 for further details of SPT mathematical analysis and modeling.  

 

1.5 High-speed Structured Illumination microscopy 
Live 2D-SIM (light modulation/grazing incidence illumination microscopy, GI-SIM) images of 
cells stained for 20 minutes with ER Tracker Green (ThermoFisher scientific, E34251) were 
acquired with a custom-built highspeed SIM microscope19,20, using a spatial light modulator 
(SLM). ER Tracker Green was imaged using a 100X/1.49NA TIRF oil-immersion objective 
(Olympus) with a 488 nm diode laser (Toptica) at an irradiance of 50W/cm2, with emission 



imaged via a notch filter (FF01-525/30, Semrock) onto an sCMOS camera (ORCA Flash 4.0, 
Hamamatsu). 2D-SIM gratings displayed on the SLM resulted in a line spacing of 228 nm at 
the sample, corresponding to an angle of incidence of 44.6◦. Each super-resolved frame was 
obtained from the reconstruction24,28 of nine raw frames acquired at 6 ms/exposure (54 ms/SIM 
frame). 3D-SIM (23 slices, 2.4 µm) was performed using Elyra microscope (Zeiss), with Plan 
Apochromat X63/1.4NA oil objective and sCMOS PCO Edge camera (Andor) on 
Paraforamdehyde 2%, Gluteraldehyde 2%, 100mM sodium cacodylate, 2mM CaCl2, pH7.4 1 
hour room temperature. See Supplementary Note 1 for further details of SIM image analysis. 

Mathematical modelling and analysis 
Details of the computational analyses of single particle tracking and structured illumination 
microscopy, and their mathematical modelling are described in Supplementary Note 1.   

	

Statistics and Reproducibility 
Statistical analyses and visualisation were performed using Matlab 9. Error bars, P values and 
statistical tests and sample sizes are reported in the figure legends.  Statistical tests: differences 
between probability distribution were assessed using two-way Kolmogorov-Smirnov tests and 
differences between distribution medians were assessed using two-sided Mann-Whitney U-
tests. All experiments were performed independently at least three times. 

 

Code availability 
Custom code generated for single particle tracking analysis and visualisation as well as for SIM  
ER network analysis of SIM images can be obtained from Zenodo database along with 
experimental raw data examples, DOI: 10.5281/zenodo.1317630 and DOI: 
10.5281/zenodo.1318129 respectively. 

 

Data Availability 
Source image-series data for Fig. 1e, Supplementary Fig. 2 and Fig 4e, f have been provided as 
supplementary video1, 2 and 8 - 10 respectively; and statistical information for Fig. 2 and 
supplementary Fig. 2 have been provided in Supplementary Table 1. Custom code has been 
deposited in the Zenodo database DOI: 10.5281/zenodo.1317630 with experimental raw data 
DOI: 10.5281/zenodo.1318129. All other data supporting the findings of this study are available 
from the corresponding authors on reasonable request. 
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Supplementary Figure 1 

Exogenous expression levels of a fluorescent protein do not affect macromolecular crowding in the ER lumen; TMR photostability 
affords longer SPT trajectories. 

(a) Plot of fluorescence intensity versus fluorescence lifetime of individual cells expressing an ER-localised FRET-based 
macromolecular crowding probe as in Fig.1b. Fluorescence intensity serves as a measure of exogenous protein expression levels. 
Fluorescence lifetime correlates inversely with macromolecular crowding as described in Fig.1b.  Note, no correlation (Pearson 
correlation coefficient ρ=-0.2109) was observed between the broad range of exogenous protein expression levels and macromolecular 
crowding, n=48 independently sampled cells (b) Distribution of trajectory lengths (central bar indicates the median, bottom and top 
edges of the box indicate the 25th and 75th percentiles respectively and whiskers extend to the most extreme data points), generated 
as in Figure 2 from single particle signal of ER-targeted mEOS or Halo-tagged calreticulin labelled with 0.5 nM TRM-ligand. Note, the 
correlation between fluorophore photostability and trajectory length attest to the fidelity of the tracking procedure. 



 
 



 
 

Supplementary Figure 2 

Analysis of SPTs Diffusive dynamics and schematic illustration of internode and intranode motion. 

(a) Distributions of diffusion coefficients computed on the individual square bins presented in Fig.2f for the entire domain, including 
internode high-velocity displacements and intranode displacements. Numbers correspond to AVG±SD. (b) Mean Squared 
Displacement analysis applied on the SPTs from the experiment presented in Fig.2. Left panel: individual MSD curves color-coded by 
their anomalous exponent α and right panel: distribution of the corresponding anomalous exponents (central bar indicates the median,
the bottom and top edges of the box indicate the 25th and 75th percentiles respectively and whiskers extend to the most extreme data
points). (c) Average MSD computed on trajectory fragments contained in nodes. Left panel: average MSD curve for each node, color-
coded according to its anomalous exponent and right panel: distribution of the corresponding anomalous exponents (central bar 
indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively and whiskers extend to
the most extreme data points). (d) Averaged MSD curves computed from trajectories exiting three different nodes with anomalous 
exponents α>1 indicative of a super-diffusive regime. For a description of the method, refer to Suppl. Note 1 section 1.1. (e)
Synchronization procedure: Left: Trajectories are synchronized on their last point spent in the indicated node (red arrow). Trajectories 
can then either jump from node to node or move inside a node. Right: For each time τ after escaping the node, internode (red 
segments) and intranode (black segments) displacements (as identified from left panel) are grouped into separate ensembles and an 
average instantaneous velocity is computed for each group based on formula 35 and 36 (Suppl. Note 1); analysis performed on n 
trajectories as denoted in individual panels.  



 
 



 
 

Supplementary Figure 3 

Characteristics of ER luminal SPT displacements for several cell types and markers. 

Statistics of SPTs motion obtained as in Fig.2, but for a HEK-293t cell (a) and a COS-7 cell (b) expressing an inert tracer – ER-targeted 
HaloTag with a C-terminal ER-retention signal, KDEL. Each column is organized similarly to Fig.2. Top: SPTs are presented color-
coded according to the instantaneous velocity distributions presented below. The overlaid curves on the instantaneous velocity 
distributions correspond to the distributions expected for an exclusively diffusion-driven motion (solid lines, using the apparent D), or a 
combination of diffusion and flow (dashed lines, using D in nodes and the average instantaneous velocity between node). Inset are the
corresponding cumulative distributions (color-coded as in the histogram). Middle: density and diffusion maps computed for a grid of 
square bins (sides of 0.2 µm) imposed on the particle displacements and flow map computed by averaging the non-Brownian velocity 
jumps of particles moving between pairs of neighbour nodes and color-coded according to their velocity. Bottom: distributions of 
apparent diffusion coefficients (left), node diffusion coefficients (middle) and average instantaneous velocity between neighbouring 
nodes (right). (c) SPTs recorded for a COS-7 cell expressing an ER-localised TMR labeled Halo-tagged Calreticulin (left) color-coded 
according to the instantaneous velocity distribution (right). Overlaid curves on the histogram are as for (a-b). Shown are characteristic 
images observed in three independent repeats. All values are given as AVG ± SD, for n trajectories as denoted in individual panels. 



 
 



 
 

Supplementary Figure 4 

Characteristics of ER structural components mobility. 

(a) 3D kymograph presenting the motion of tubules and junctions across time (z-axis). (b) SPTs extracted from a stack of 50 images. 
Inset: magnification of an ER region showing junction trajectories. (c) Distribution of anomalous exponents obtained from SPTs (central 
bar indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively and whiskers extend 
to the most extreme data). (d) Distribution of instantaneous velocities of the SPTs. (e-f) Estimation of the characteristics of the 
stochastic dynamics associated to the trajectories: distribution of spring constants (e) and diffusion coefficients (f). (g) Observed and 
simulated junctions confinement areas. Inset: corresponding boxplots (central bar indicates the median, the bottom and top edges of 
the box indicate the 25th and 75th percentiles, respectively and whiskers extend to the most extreme data points). A Man-Whitney U-
test was used to compare the two distributions, returning a non-significant p-value (p=0.1927), see also video S5. (a,b) images are 
representative of three independent repeats. Analyses performed on n tubular junctions as denoted in individual panels.  



 
 



 
 

Supplementary Figure 5 

Contraction points in ER tubules and ER fragmentation.
High-speed Structured Illumination Microscopy (SIM) super-resolved images of the tubular ER for a COS7 cell (a) and a HEK293 cell 
(b), intensity color-coded. The observed contraction is unlikely to reflect Z-dimension tubule bending at a stiff angle, as sharp bending 
events have not been seen along the tubules in X-Y, and given the tubule dimensions the observed phenomenon is inconsistent with Z-
bending at an angle sufficient to take a small tubule-fragment out of the focal plane. Tubule contractions are visible also in 3D-SIM 
(Video S9). (c) Confocal image of the ER, following 20 minutes exposure to 5 µM Thapsigargin (an ER calcium uptake inhibitor), Note 
ER fragmentation accompanied by apparent tube-contraction, through elevation in cytoplasmic calcium21). (d) SPT velocity analysis, 
performed as in Fig. 2, of cell treated to induce ER fragmentation as in (c), values given as AVG ± SD, n=47 nodes. Ovals exemplify the 
nearly spherical structures of fragmented ER. (e) Fragmentation, with notable contracted tubule intermediates, was induced by intense
561 nm laser illumination of cells expressing ER-targeted HaloTag and loaded with excess TRM. (a) characteristic images observed in
five independent repeats, (b-e) characteristic images observed in three independent repeats. 
 1 
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Supplementary Tables 3 
 4 
Supplementary Table 1: Single particle motion parameters across cell types, ER tracers. 5 
 6 
Dnode – diffusion coefficient in tubule junctions; Vflow – flow velocity in tubules, Dapp – apparent diffusion coefficient 7 
computed from without diffusion/flow-deconvolution of single particle displacement profiles.   8 
 9 
 10 
Supplementary Table 2: Plasmids list 11 
 12 

13 



D_app µm²/s D_node µm²/s v_flow µm/s n_T trajs/exp
Cell type Marker AVG ± SD AVG ± SD AVG ± SD AVG n
HEK 293T Calreticulin 1.64±0.66 0.32±0.14 27.10±5.69 14177 7

Halotag ER 1.70±0.94 0.39±0.08 26.97±6.36 11094 5
COS-7 Calreticulin 1.96±1.09 0.38±0.20 30.93±7.44 13485 6

Halotag ER 3.94±1.03 0.57±0.29 42.72±2.32 13068 6
SH-SY5Y Calreticulin 2.01±0.43 0.40±0.10 30.01±3.00 18789 4

Halotag ER 2.59±0.65 0.42±0.19 31.70±3.42 12925 5

Edward Avezov
Table 1

Edward Avezov
Table 1



ID Plasmid name  Description Reference First appearance Label in figure

1081  pDendra2-ER-5
Mammalian expression, ER-
localized Dendra2 Addgene plasmid #57716  Figure 1 Dendra2-ER

1578 mEos2-ER
Mammalian expression, ER-
localized mEos2

PMID:19169260, Addgene 
plasmid #57373 Figure S1  mEos-ER

2158 ATeam1.03-nD/nA/pcDNA3
Mammalian expression of an 
ATP probe,  A-Team

PMID:19720993, Addgene 
plasmid #51958 Figure 1 Ateam

2159 ER-Crowding_FRET1_CRH2_KDEL_pCDNA3.1(+)
Mammalian expression of FRET 
crowdedness probe

this study, based on 
PMID:25643150 Figure 1 ER Crowdedness FRET probe

2160 pFLAG_hCALR_kdel

 Mammalian expression, of N-
term. Halo-tagged human 
calreticulin this study Figure 2 HaloTag-Crt

1735 Hatolag_kdel
Mammalian expression of ER-
localized HaloTag this study Figure S3 HaloTag-ER

UK1579 pmEos2-Calnexin-N14
Mamalian expression mEos2-
tagged human calnexin 

PMID:19169260, Addgene 
plasmid #57352 Figure 3 mEos2-calnexin

Edward Avezov
Table 2



 
 

Supplementary Videos 14 
 15 
Supplementary Video 1:  Dendra2-ER photo conversion pulse chase.  16 
Real time image series of experiment in figure 1e. 17 
 18 
Supplementary Video 2:  Raw data of ER single particle tame series.  19 
Shown along super-resolution image reconstruction using single molecule localisation algorithm. 20 
 21 
Supplementary Video 3:  Zoom in on a particle with a long trajectory.   22 
A magnified view that exemplifies a unidirectional displacement of a particle from Supplementary Video 2. Following 23 
trajectories generation as in Figure 2, the view was filtered to show only trajectories with more 40 detection points. 24 
 25 
Supplementary Video 4:  Labeling control. SPT signal before, during and after the labeling. 26 
 27 
Supplementary Video 5:  ER structural components mobility.  28 
High-speed Structured Illumination Microscopy (SIM) super-resolved time series of the tubular ER, shown alongside 29 
skeletonised images of the network and statistics of tubule length frequency distribution.  30 
 31 
Supplementary Video 6:  Kinetic analysis of ER tubular network remodelling.  32 
High-speed Structured Illumination Microscopy (SIM) super-resolved time series of the tubular ER. These are a sample of 33 
the videos used to calculate a mean percentage of 0.14 +/- 0.04 % tubules growing at any given time. This was calculated 34 
as the number of growing events per frame divided by the number of tubules per frame; for example. 35 
 36 
Supplementary Video 7: Kinetic analysis of ER tubular network remodelling. 37 
SIM images time series as in Supplementary Video 6, containing 80400 tubules in 100 frames (804 tubules per frame) 38 
and 103 frames containing growing events (1.03 growing events per frame), giving 1.03/804 = 0.13 % of tubules growing 39 
at any time. 40 
 41 
 42 
Supplementary Video 8:  Transient tubule narrowing.  43 
Real time image series of experiment in figure 4F. Note that although the size of the tubule reduces slightly below the 44 
resolution limit (80-90 nm), the contraction remains detectible due to a reduction in the intensity of the point-spread 45 
function. Thus, applying the ‘edges’ colourmap (ImageJ), visualises a line of constant intensity, highlighting the contraction 46 
phenomenon. The resolution limit precludes accurate distance measurements of contraction diameter.  47 
 48 
Supplementary Video 9:  3D-SIM visualisation of tubule narrowing.  49 
3D reconstruction of a stack of SIM images from paraformaldehyde/glutaraldehyde fixed cells. 50 
 51 
Supplementary Video 10:  ATP dependence of tubular contraction frequency.  52 
High-speed SIM super-resolved time series images of individual ER tubules, with statistics of the number of point 53 
contraction events per second shown alongside for ATP depletion conditions 54 
 55 
Supplementary Video 11:  Light-induced reversible ER fragmentation.  56 
Realtime image series of experiment in figure S11. 57 
 58 
Supplementary Note 1 : Mathematical modelling and analysis. 59 
Details of the computational analyses of single particle tracking and structured illumination microscopy, and 60 
their mathematical modelling. 61 
 62 



Supplementary Information

Methods

1 Single Particles Trajectories analysis

When not stated otherwise, the following analysis was performed using MAT-
LAB version 9.0 (MathWorks).

1.1 Mean Squared Displacement and first moment anal-
ysis

The Mean Squared Displacement (MSD) approach has been used to detect
deviations from classical free di↵usive motion of SPTs. Indeed, the MSD at
time lag ⌧ is defined by

MSD(⌧) = h|X(t+ ⌧)�X(t)|2i, (1)

where the average is computed either over realizations or time. This quan-
tity is expected to grow like MSD(⌧) = A⌧

↵ where A is a coe�cient and
↵ is called the anomalous exponent. An exponent ↵ > 1 is a signature of a
super-di↵usive regime while ↵ < 1 indicates a sub-di↵usive regime [1]. This
analysis however does not provide any explanation for the mechanisms caus-
ing a specific regime because it is usually computed by averaging over time
(time-averaged MSD) or space (trajectory-averaged MSD) thus disregarding
the possible heterogeneous geometrical organization of STPs.
The motion exhibited by the recorded trajectories analyzed in Fig.2 is nei-
ther time nor space homogeneous. Indeed, the motion in nodes and tubules
are di↵erent and trajectories exhibit high-velocity peaks of random duration
(Fig.5d left), separated by random time intervals (Fig.5d right), making the
MSD analysis hard to perform on these data. For that reason, we have chosen
to conduct here an analysis based on the stochastic equation of motion (15)
through which local parameters of motion are extracted from many redun-
dant trajectories. This analysis allows to recover the field of force acting on
the particles at each location from the first order moment of the individual
trajectory displacements (16).
It is also possible to draw the same conclusions about the observed dy-
namics by conducting an MSD analysis on specific subset of trajectories.
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For this analysis we relied on the time averaged MSD (taMSD) at time lag
⌧ = 1 . . . (Mi � 1) defined, for a trajectory Xi composed of Mi points, as:

taMSDi(⌧) =
1

Mi � ⌧

Mi�⌧X

k=1

(Xi(tk+⌧ )�Xi(tk))
2 (2)

To recover the anomalous exponent from a taMSD curve, we fitted to the
first 8 points of this curve in the log-log space the function:

log(A) + ↵log(t) (3)

using the fit function from MATLAB version 9.0 (MathWorks). Fig.S2b
presents the taMSD curves in log-log space (left) and the corresponding
anomalous exponents ↵ (right) obtained by computing the taMSD on each
trajectory, longer than 20 points (360ms) and visiting at least two recon-
structed network nodes, from the experiment presented in Fig.2 and found a
broad distribution of anomalous exponents (0  ↵  1.5) in agreement the
proposed two-states dynamics. To investigate the type of dynamics inside
the nodes, we determined for each node the ensemble of N sub-trajectories
X1 . . . XN located inside the node and obtained the node MSD by averaging:

taMSD(⌧) =
1

N

NX

i=1

taMSDi(⌧) (4)

In Fig.S2c we report for each node of the experiment presented in Fig.2 its
taMSD curve in log-log space (left) and the corresponding distribution of
anomalous exponents (right) observing exponents ↵ < 0.8, indicating a sub-
di↵usive behavior. Finally, to investigate the type of dynamics outside nodes,
we synchronized for each nodes, the trajectories on their exit from the node
(as presented in section 1.7 and Fig.S2e) and computed an average MSD
using eq.4. In Fig.S2d we present three examples of nodes for which this
synchronization result in an averaged taMSD characterized by an anomalous
exponent ↵ > 1 indicating in these cases a super-di↵usive behavior.

1.2 Models for the instantaneous velocity distribution

1.2.1 Pure Di↵usion model

To analyze the velocity histograms presented in Fig.2c,3a and S3, we use a
two-dimensional random walk model:

X(t+�t) = X(t) +
p
2D�t⌘, (5)

2



where ⌘ = [⌘1, ⌘2] with ⌘1, ⌘2 ⇠ N (0, 1) is a white noise. The distribution of
the displacement lengths is given for l > 0 by [2]:

Prdi↵

⇢
||�X(t)||

�t
= l

�
=

l

�2
d

exp

✓
�l

2

2�2
d

◆
, (6)

where ||.|| is the Euclidean norm and

�d =

r
2D

�t
. (7)

We use eq. 5, with the parameters presented in Table 1, using the appar-
ent di↵usion coe�cient D = Dapp defined in section 1.4.2 to generate the
distributions shown in Fig.2c, Fig.3a and S3 (solid lines).

1.2.2 Flow-di↵usion switching model

To account for the fast (faster than the acquisition time �t = 18ms) intern-
ode dynamics observed in Fig.2c, we use a jump-di↵usion model [3] defined
by the following rule

X(t+�t) = X(t) +

8
<

:

J�t w. p. ��t

p
2D�t⌘ w. p. 1� ��t

, (8)

where the statistics of the jumps J is approximated from the observed flow
velocity distribution, presented in the inset histogram of Fig.2g and in Fig.S3
as ||J || ⇠ N (µjump, �jump). Although the jump angle should follow the ER
architecture, for the present model, we draw the angles from a uniform distri-
bution in [0, 2⇡]. This simplification holds true as long as we are considering
only the norm of the jumps. To estimate the distribution of displacement
lengths of process 8, we use Bayes’ law and condition the displacement on
each state of the process:

Prswitch

⇢
||�X(t)||

�t
= l

�
= Pr

⇢
||�X(t)||

�t
= l|Jump

�
Pr{Jump, t}

+Pr

⇢
||�X(t)||

�t
= l|Di↵

�
Pr{Di↵, t}. (9)
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By definition the steady-state probability of being in a jump or di↵usion
state are:

Pr{Jump} = lim
t!1

Pr{Jump, t} =
��t

1� ��t+ ��t
= .

P r{Di↵} = 1� Pr{Jump} = 1� , (10)

where  = ��t 2 [0, 1]. Approximating eq. 9 by eq. 10 and replacing the
displacement length distributions by a normal distribution for the jumps and
a Rayleigh distribution (eq. 6) for di↵usive displacements, we obtain

Prswitch

⇢
||�X(t)||

�t
= l

�
= Pr

⇢
||�X(t)||

�t
= l|Jump

�
+ (1� )Pr

⇢
||�X(t)||

�t
= l|Di↵

�

= 
1

�j
p
2⇡

exp

 
(l � µjump)2

2�2
jump

!
+ (1� )

l

�2
d

exp

✓
�l2

2�2
d

◆
, (11)

where �d is given by eq. 7. To estimate the switching probability  in eq.
11, we use a Maximum-Likelihood Estimation (MLE) approach based on the
probability

p(l|) = Prswitch

⇢
||�X(t)||

�t
= l

�
, (12)

of observing l given . The MLE ̂ for N observed displacements l1, . . . , lN
is [4]

̂ = argmax
2[0,1]

NX

i=1

ln(p(li|)). (13)

We compute ̂ using the mle function of MATLAB version 9.0 (MathWorks)
applied to the trajectory displacements extracted from the SPTs described
in methods.
To generate the distributions shown in Fig.2c and S3 (dashed lines), we use
eq. 8, with the parameters presented in Table 1, using the di↵usion coe�cient
in the nodes D = Dnode defined in section 1.4.3.

1.3 Reconstruction of the ER Network from SPTs

Detecting nodes (tubule junctions) boundary and inter-junction stretches
(tubules) is based on the heterogeneity of the time-integrated particle spatial
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density presented in Fig.2d and S3. The algorithmic procedure uses the large
amount of recorded SPTs described in methods and proceeds as follows. We
first construct clusters of points (nodes) defined as regions of aggregation
of short displacements (aggregation regions appear to co-localize with short
displacements as presented in Fig.2c and S3:

1. Define a threshold VL (in µm/s), and discard from the analysis any
point Xi(t) such that ||�Xi(t)||

�t � vL (�Xi(t) is the displacement as
defined in methods).

2. Apply the dbscan [5] clustering algorithm to cluster the remaining
points (implementation from scikit-learn [6] through Python3 pro-
vided by the Anaconda Distribution version 4.3.8 (Anaconda Inc.)).

3. Approximate the boundary of each cluster as an ellipse with semi-axes
a > b using a principal component analysis. Remove ellipses with an
area ⇡ab > 4µm2 or an eccentricity a

b > 4. Merge overlapping ellipses
by fitting a new ellipse to the union of their points.

4. Assign each points discarded in step 1 to the cluster corresponding to
the ellipse in which they fall, if any.

The dbscan algorithm used in step 2 allows to generate clusters based on the
local point density and requires two parameters:

1. The maximum distance R (in µm) below which two points are consid-
ered to be neighbors.

2. The minimum number of points N at a distance  R of a point to start
a cluster.

These two parameters define a minimal density N
R of points/µm2 inside each

cluster. The values of R and N depend on the morphology of the imaged
ER and the local number of recorded trajectories. For each dataset, these
values were determined empirically such that the computed clusters overlap
with the ER structure formed by the trajectories.
Once nodes are found, we defined tubules by constructing a connectivity
matrix C of size K ⇥K (K number of detected nodes) where ci,j (1  i, j 
K) contains the number of trajectory displacements starting in node i and
arriving in node j. Specifically, we increment the coe�cient ci,j by one for
each data point Xk(tl) (1  k  Nt, 0  l < Mk�1) in either of the following
cases:
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1. Xk(tl) is located in node i and Xk(tl+1) in node j

2. Xk(tl) is located in node i, Xk(tl+1) does not belong to any node and
Xk(tl+2) is located in node j (in this case 0  l < Mk � 2).

Finally, we removed from the graph any disconnected node. The di↵er-
ent parameters used for reconstructing the graphs presented in the main
text and supplementary data are given in Table 2. Graphs from Supple-
mentary Table 1 (Main Text) were constructed using the parameter ranges:
VL = [9, 19]µm/s (following the histogram of instantaneous velocities), R =
[0.08, 0.26]µm, N = [10, 45] points and ⇡ab  [4, 8]µm2. Ellipses representing
the nodes of the graphs are shown in Fig.2dfg and S3.

1.4 Recovery of the local dynamics in the ER lumen
from SPTs

1.4.1 Langevin equation and characteristics of motion

To interpret the individual trajectories described in methods, we use the
classical overdamped limit of Langevin’s equation [3, 7], where the velocity
is the sum of a force or a flow (drift) plus a di↵usion term. For a di↵usion
coe�cient D and a field of force F (X), the dynamics is given by

Ẋ(t) =
F (X(t))

�
+
p
2D ẇ(t), (14)

where ẇ(t) is a vector of independent standard �-correlated Gaussian white
noises and � is the viscosity [3, 9]. The source of the driving noise ẇ(t) is
the thermal agitation. To interpret trajectories, we coarse-grain eq. 14 in an
e↵ective stochastic process [10, 11, 12, 14]

Ẋ(t) = b(X(t)) +
p
2Be(X(t)) ẇ(t), (15)

where b(X) is the empirical drift field, Be(X) the di↵usion related matrix
and De(X) = 1

2Be(X)BT
e (X) (T is the transposition) is the e↵ective di↵u-

sion tensor. This model is used to construct the empirical estimators for the
first and second order moments for the di↵usion and drift from trajectories.
The conditional moments are computed from the trajectory displacements
(see methods) [9],

b(X) = lim
�t!0

E[�X(t) |X(t) = X]

�t
, De(X) = lim

�t!0

E[�X(t)T�X(t) |X(t) = X]

2�t
.(16)
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Here the notation E[· |X(t) = X] means averaging over all trajectories that
are located at pointX at time t. The coe�cients of eq. 15 can be statistically
estimated from a large sample of trajectories in the neighborhood of the point
x at time t. On the recorded SPTs, the expectations in eq. 16 are estimated
with a time step �t = 18ms according to the image acquisition time.
To compute the empirical drift and di↵usion coe�cients, we first partition
the data into square bins B(xk, r) of center xk and side r = 0.2 µm [11].
Starting from the Nt acquired projected trajectories described in methods,
eq. 16 becomes for a drift vector b(x) = (bx(x), by(x))

bx(xk) ⇡ 1

Nk

NtX

i=1

X

0j<Mi�1,X i(tj)2B(xk,r)

✓
xi(tj+1)� xi(tj)

�t

◆

by(xk) ⇡ 1

Nk

NtX

i=1

X

0j<Mi�1,X i(tj)2B(xk,r)

✓
yi(tj+1)� yi(tj)

�t

◆
, (17)

where Nk is the number of displacements starting in bin B (xk, r). Similarly,
the components of the e↵ective di↵usion tensor De(xk) are approximated by
the empirical sums

Dxx(xk) ⇡ 1

Nk

NtX

i=1

X

0j<Mi�1,X i(tj)2B(xk,r)

(xi(tj+1)� xi(tj))2

2�t

Dyy(xk) ⇡ 1

Nk

NtX

i=1

X

0j<Mi�1,X i(tj)2B(xk,r)

(yi(tj+1)� yi(tj))2

2�t
(18)

Dxy(xk) ⇡ 1

Nk

NtX

i=1

X

0j<Mi�1,X i(tj)2B(xk,r)

(yi(tj+1)� yi(tj))(xi(tj+1)� xi(tj))

2�t
.

By definition, the moment estimators 17 and 18 are computed by averag-
ing the displacements �X(t), each displacement contributing to the bin into
which its initial point X(t) falls. The computation reveals that the di↵usion
tensor is isotropic (Fig.2f and Fig.S3). Furthermore there is no need for fur-
ther deconvolution of the SPTs, as the localization noise does not contribute
until second order to the di↵usion tensor and drift [13]. To obtain stable
estimations, we only use bins that contain at least 20 displacements. We
use the same grid to compute a density map, providing an estimate of the
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local density of trajectories, by counting the number of displacements falling
into each bin and dividing by the size of the square (0.04µm2). Density and
di↵usion maps are presented in Fig.2df, Fig.3bc and Fig.S3a,b.

1.4.2 Estimation of the apparent di↵usion coe�cient

We define the apparent di↵usion coe�cient Dapp as the di↵usion coe�cient
estimated using the entire distribution of displacements. Note that this dis-
tribution also contains large values, that cannot be attributed to di↵usion.
We estimated Dapp by averaging the values obtained using eq. 18 on each
bin over the entire map (only for bins containing at least 20 points). The
distribution of di↵usion coe�cients from individual bins of the di↵usion map
from Fig.2f is presented in Fig.S2a, in Fig.3d for the map of Fig.3c and in
Fig.S3a,b for the other datasets.

1.4.3 Estimation of the di↵usion coe�cients in the nodes

The di↵usion coe�cient Dnode inside each node is computed from eq. 16, but
in addition we constrained both ends of the displacement be located inside
the node. For a node delimited by an ellipse E, we get:

Dnode(X(t)) = lim
�t!0

E[�X(t)T�X(t)|X(t) = X 2 E and X(t+�t) 2 E]

2�t
.(19)

We use eq. 19 to estimate the di↵usion coe�cient Dnode in each node and
report their distributions in Fig.2f (inset) for the main text dataset and
Fig.S3a,b.

1.4.4 Estimation of the internodes displacements

We define the instantaneous velocity (in µm/s) between two successive points
of the same trajectory X(t1) and X(t2) (t2 > t1) as the ratio of the distance
to elapsed time

v(X(t1),X(t2)) =
||X(t2)�X(t1)||

t2 � t1
, (20)

where ||.|| is the Euclidean distance. We define the flow velocity vflow between
two nodes A and B, as the average of the instantaneous velocities for the
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displacements connecting the two nodes:

vflow(A,B) = E

v(X(t1),X(t2))

����
(X(t1) 2 A,X(t2) 2 B) or
(X(t1) 2 B,X(t2) 2 A)

�
, (21)

where by construction t2 � t1 2 {�t, 2�t} (see tubule reconstruction from
section 1.3). We discretize eq. 21 and obtain the estimator:

vflow(A,B) ⇡ 1

N

NX

i=1

v(X i(t1),X i(t2)), (22)

where N is the number of trajectory displacements connecting the nodes
A,B and X i is the i

th such displacements. The velocity vflow characterizes
the jump flow between nodes. As shown in Fig.2c, this internode flow is
associated with the thick tail of the velocity distribution. The distributions of
jump velocities between each pair of neighbor nodes for the di↵erent datasets
are presented in Fig.2g and Fig.S3a,b.

1.5 Static ER network analysis

1.5.1 Flow directionality and strongly connected components

To determine whether the ensemble of observed displacements between two
neighbor nodes i and j form a uni- or bi-directional flow, we define a uni-
directionality score r as the ratio of the number of observed displacements
between the two nodes with direction i ! j divided by the total number of
displacements in both directions:

ri,j =
ci,j

ci,j + cj,i
, (23)

where C is the connectivity matrix of the graph as defined in section 1.3.
Using ri,j, we build a binary version C

0 of C defined as

c
0
i,j =

⇢
1 when ri,j � 0.25
0 otherwise

. (24)

C
0 has the property that c0i,j = c

0
j,i = 1 when 0.25  ri,j  0.75 (bi-directional

flow) and c
0
i,j = 1, c0j,i = 0 when ri,j > 0.75 (uni-directional flow). The ratio

ri,j (and thus c0i,j) is computed only for pairs of nodes connected by at least
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three displacements (ci,j + cj,i � 3). To find the connected components of
the reconstructed network, we use the classical Tarjan Strongly Connected
Components (SCCs) detection algorithm [15] on the binary connectivity ma-
trix C

0 (graphconncomp function from MATLAB version 9.0 (MathWorks)).
SCCs are a partition of the ensemble of nodes such that there exists a path
(taking into account the directionality) from each node of a subset to any
other node of the same subset. The presence in Fig.4b of a SCC ecompassing
almost the entire graph shows that the observed flows have the potential to
move particles through almost the entire network. In addition Fig.4b also
displays the flows directionality on the links as: arrows for uni-directional,
solid (no arrow) for bi-directional and dashed for undecided.

1.5.2 Count of A↵erent and E↵erent branches

We further characterize the structure of the reconstructed ER graph by com-
puting for each node k the number of a↵erent and e↵erent branches connected
to it. An a↵erent (resp. e↵erent) branch is a link l ! k (i.e. cl,k > 0) (resp.
k ! l, ck,l > 0) where l is any other node of the graph. Based on the count of
a↵erent and e↵erent nodes, we define the out and in-degree of node k using
the connectivity matrix C as:

outdeg(k) =
NX

i=1

1ck,i>0 and indeg(k) =
NX

i=1

1ci,k>0, (25)

where 1a>b =

⇢
1 if a > b

0 otherwise
, and N is the number of nodes in the graph.

In- and out-degrees are computed only for nodes k such that
NP
i=1

ci,k > 2 and

NP
i=1

ck,i > 2 respectively. The distribution of in- and out-degrees are presented

in Fig.4c.

1.5.3 Fraction of entering and exiting displacements in nodes

To study the passing dynamics of trajectories through nodes we define a
retention score for the nodes defined as the ratio of the number of exiting
displacements to the total number of entering and exiting displacements for
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a node k:

�k =

PN
i=1 ck,iPN

i=1 ci,k +
PN

i=1 ck,i

, (26)

where C is the connectivity matrix of the graph and N the number of nodes.
We have ' 2 [0, 1] such that 'k ! 0 indicates that the node retains tra-
jectories, 'k ! 1 indicates that trajectories originate from this node and
'k ⇡ 0.5 indicates that trajectories pass through the node. 'k was com-

puted only for nodes k such that
NP
i=1

ck,i + ci,k > 2. The distribution of � for

the reconstructed ER network is shown in Fig.4d.

1.6 Transient ER network analysis

At steady-state, we identified the uni- and bi-directional flows inside tubules
(Fig.4b), we now investigate how the direction of these flows evolve with time.
To this end, we determine the distribution of durations of uni-directionality
periods of the flow between two nodes as presented in Fig.5a. The analysis
is performed on each pair or neighbouring (directly linked by trajectories)
nodes, linked by at least 20 displacements registering one of the two possible
directionalities (either node A ! B or B ! A). The following algorithm
groups the successive displacement events as a function of their directionality
and determine the duration of these groups:

1. Collect the next displacement event observed at time tfirst, identify its
direction say A ! B and form a new group containing this event.

2. Accumulate in the group created in step.1 the following jump events
with direction A ! B and stop when there are no more event or after
encountering two events with direction B ! A (in this case the event
or the two successive B ! A events when it occurs, are not collected).
The last event considered in the group occurs at time tend and always
has the same direction as the group (see Fig.5a).

3. Compute the duration of the group as ⌧ = tend � tfirst.

4. Return to step 1.
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We discarded groups formed by less than 3 displacements with the same di-
rection. The distribution of the uni-directional flow durations ⌧ is presented
in Fig.5b.
To interpret the mean of this distribution, we recall that this statistics is
partly contaminated by the fraction of activated particles located in nodes
and the track lengths. Indeed, only photo-activated particles appear in the
statistics. To recover the uni-directional duration of the fluxes from the em-
pirical distribution, we use a model taking into account these two character-
istics. The probability that the flux between nodes A and B lasts a duration
⌧Uni = t is computed by conditioning on having k events (k particles flowing
in the same direction) during that time

Pr{⌧Uni = t} =
1X

k=1

Pr{⌧1 + . . .+ ⌧k = t|k}PrUni{k}, (27)

where the probability that k event occurs in the same direction is by sym-
metry,

PrUni{k} =
1

2k
(28)

and ⌧k is the arrival time of the k
th event after the first one. We consider

that the distributions of arrival times are Poissonian with same rate �, inde-
pendent of the initial node A or B. We conclude that

Pr{⌧1 + . . .+ ⌧k = t|k} = �
(�t)k�1

(k � 1)!
exp(��t). (29)

Computing the sum from eq. 27, we obtain for at least 2 events

Pr{⌧Uni = t} =
�

2
(exp

✓
��t

2

◆
� exp(��t)). (30)

Eq. 30 is the probability density function when all particles are labeled and
its average is 3

2� . When a particle is activated with probability p, which
represents the steady-state fraction of labeled particles, the statistics of uni-
directional flow is still given by formula 30 but with a rate �̃. Using Bayes’
law, the probability of observing a displacement event is

Pr{⌧Uni = t} = Pr{⌧Uni = t, activated}Pr{activated}
+Pr{⌧Uni = t, notactivated}Pr{notactivated}, (31)
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where Pr{activated} = p is the fraction of activated molecules. The second
term is zero because we cannot see displacement events from non-activated
molecules. Thus the mean unidirectional flow duration becomes

h⌧i = p⌧̄ , (32)

where the rates are related by � = p�̃. Considering a fraction p = 1% of
activated molecules, we predict that the mean undirectional time should be
around h⌧i = 38ms instead of the observed ⌧̄ = 3.89s.

1.7 Instantaneous velocities along individual trajecto-
ries

To obtain statistics of the velocity fluctuations of trajectories (recorded at
di↵erent times over a period of seconds) and possibly located either in tubules
or nodes, we introduced a ’synchronization’ procedure: the velocity fluctu-
ations of individual trajectories were monitored starting from the last time
point where the particle was in a given node prior to its exit. The velocity
fluctuations following the node exit was plotted as a function of time elapsed
since the synchronization event (a universal time scale for all trajectories re-
gardless when they were detected). In details, the synchronisation event is
defined for a trajectory Xi, its last recorded point inside some node A,

t
⇤
i = max

0j<Mi�1
{X i(tj) 2 A and X i(tj+1) /2 A}. (33)

Considering the nA trajectories going through node A, the ensemble of last
points inside A is

XA = {X i(t
⇤
i )|i = 1..nA}. (34)

We now divide displacements along individual trajectories into two subsets
based on the starting node A and appearing at a time ⌧ > 0 after exit:
XA,node(⌧) containing displacements inside nodes and XA,tubule(⌧) containing
displacements connecting two nodes:

XA,node(⌧) = {Xi(t
⇤
i + ⌧) | Xi(t

⇤
i ) 2 XA and Xi(t

⇤
i + ⌧ ��t) 2 N and Xi(t

⇤
i + ⌧) 2 N}

XA,tubule(⌧) = {Xi(t
⇤
i + ⌧) | Xi(t

⇤
i ) 2 XA and Xi(t

⇤
i + ⌧ ��t) 2 N1 and Xi(t

⇤
i + ⌧) 2 N2},

13



where N,N1, N2 2 N the ensemble of nodes and N1 6= N2 (N1 or N2 can be
not a node). We computed the average velocities vInter(⌧) (resp. vIntra(⌧))
at time ⌧ � �t for each subset:

vIntra(⌧) =
1

nA,intra(⌧)

X

X i(t⇤i+⌧)2XA,node(⌧)

v(X i(t
⇤
i + ⌧ ��t),X i(t

⇤
i + ⌧)) (35)

and

vInter(⌧) =
1

nA,inter(⌧)

X

X i(t⇤i+⌧)2XA,tubule(⌧)

v(X i(t
⇤
i + ⌧ ��t),X i(t

⇤
i + ⌧)),(36)

where nA,intra(⌧) (resp. nA,inter(⌧)) is the number of displacements from
synchronized trajectories that fall inside (resp. between two nodes) at time ⌧
and v(., .) is the instantaneous velocity (eq. 20). The synchronization process
and the intra and inter node velocities along synchronized trajectories are
presented schematically in Fig.S2e. In this figure, schematic trajectories
synchronized on their exit of a node A are presented on the left panel and
their associated instantaneous velocity as a function of the time since exit ⌧
from A are presented on the right panel. Fig.5c presents the average (line)
and standard deviation (shade) of the instantaneous velocity for vintra (black)
and vinter (red) for a selected node A of the main-text network for ⌧  0.2s.

1.8 Instantaneous velocity peaks duration and inter-
peaks period

To further analyze the fluctuations of the instantaneous velocities along indi-
vidual trajectories we proceed as in section 1.7 and synchronize the trajecto-
ries leaving a given node A. We then estimated the time spent by individual
trajectories in a high velocity regime (above a threshold vhigh = 19µm/s)

as the number of successive time steps ⌧ = j�t (j = 0 . . .) for which

v(Xi(t
⇤
i + ⌧ + j�t), Xi(t

⇤
i + ⌧ + (j + 1)�t) > vhigh, (37)

where Xi is a synchronized trajectory and v(., .) is the instantaneous velocity
(eq. 20). The distribution of the high velocity regime durations is shown
in Fig.5d and the distribution of periods between two high velocity regimes
in Fig.5e, computed for trajectories synchronized for each node of the ER-
network. Note that we considered only trajectories that visited at least three
di↵erent network nodes.
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1.9 Dynamics of tubular junctions

1.9.1 Extraction of junctions from SIM images

We extracted the features of tubular junctions from a SIM images stack (50
images) through a procedure similar to [16]: first, the contrast of the entire
image stack was manually modified to make the ER network more apparent.
Then each image was skeletonized, junctions were extracted from the skeleton
[17] (AnalyzeSkeleton plugin, ImageJ) and only junctions covering more than
3 pixels were kept. For each image of the stack, a new grayscale image was
generated where only the pixels belonging to selected junctions appear white
and afterward a Gaussian blur with � = 1px was applied to produce a single-
particle like image. On this stack of grayscale images, we applied a particle
detection and tracking algorithm [8] to follow junctions through successive
images (Spot Detection and Tracking plugins, Icy). This procedure produces
an ensemble of N trajectories X1 . . . XN such that Xi = Xi(t0) . . . Xi(tMi)
and �t = ti � ti�1 = 90ms. From this ensemble, we keep only trajectories
possessing at least 40 points. These trajectories are displayed in Fig.S4ab
overlaid on top of the average stack image.

1.9.2 Mean Squared Displacement (MSD) analysis

We first characterize the type of di↵usive motion exhibited by trajectories
using a Mean Squared Displacement (MSD) analysis. For an ensemble of T
trajectories the MSD at time tk is defined as:

MSD(tk) =
1

T

TX

i=1

||Xi(tk)�Xi(t0))||2 ⇡ A(tk � t0)
↵ (38)

where ||.|| is the Euclidean distance, A is a coe�cient and ↵ > 0 is the
anomalous exponent characterizing the type of di↵usive motion. To estimate
↵, we fit the first 20 points of the MSD curve to the line y(tk) = log(A) +
↵log(tk� t0) in the log-log space using a MATLAB version 9.0 (MathWorks)
script. Fig.S4c shows the distribution of ↵ obtained applying this procedure
to 100 independent samples of T = 20 randomly selected trajectories from
the ensemble of trajectories possessing at least 40 points and keeping only
the fits for which the coe�cient of determination R

2
> 0.75. We found

that ↵ = 0.60 ± 0.24 suggesting a sub-di↵usive behavior or di↵usion in the
presence of confinement forces [19].
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1.9.3 Confined motion of tubular junctions

The distribution of instantaneous velocities (Fig.S4d) suggests to model junc-
tion’s dynamics as a di↵usion process confined by active forces generated by a
parabolic potential well. The corresponding equation of motion is expressed
as an Ornstein-Ulhenbeck stochastic process

Ẋ = (X � µ) +
p
2Dẇ, (39)

where µ is the center of the potential well,  in 1/s the spring coe�cient,
D in µm2/s the di↵usion coe�cient and ẇ(t) is a vector of independent
standard �-correlated Gaussian white noises. We estimate for each recorded
trajectory Xi the three parameters: µ̂i, ̂i and D̂i. The center of the well µi

is approximated by the center of mass of the trajectory:

µ̂i =
1

Mi

Mi�1X

j=0

Xi(tj). (40)

The parameters ̂i and D̂i are estimated using the maximum-likelihood esti-
mators [18]. For a trajectory Xi(t0) . . . Xi(tn) we compute for each dimension
Xi(t) = (x1

i (t), x
2
i (t)), d = 1, 2

�̂
d
1 =

n
�1

nP
k=1

x
d
i (tk)x

d
i (tk�1)� n

�2
nP

k=1
x
d
i (tk)

nP
k=1

x
d
i (tk�1)

n�1
nP

i=1
xd
i (tk�1)2 � n�2(

nP
i=1

xd
i (tk�1))2

+
4

n
, (41)

�̂
d
2 =

n
�1

nP
k=1

(xd
i (tk)� �̂

d
1x

d
i (tk�1))

1� �̂d
1

, (42)

�̂
d
3 = n

�1
nX

k=1

(xd
i (tk)� �̂

d
1x

d
i (tk�1)� �̂

d
2(1� �̂

d
1))

2
, (43)

from which we obtain the estimators:

̂
d
i =

log(�̂d
1)

�t
and D̂

d
i =

̂�̂
d
3

1� (�̂d
1)

2
(44)

where �t = tk � tk�1 is the time-step and the term 4
n in �̂

d
1 is a correction

for the low number of points. In practice, we obtain a symmetric tensor and

16



force field computed as the averages:

̂i =
̂
1
i + ̂

2
i

2
and D̂i =

D̂
1
i + D̂

2
i

2
. (45)

We apply this estimation only on trajectories possessing at least 40 points.
Fig.S4e shows the distribution of the estimated spring constants ̂ and Fig.S4f
the distribution of the estimated di↵usion coe�cients D̂.

1.9.4 Estimating the area of confinement of tubular junctions

In this section, we define and compute the area of confinement of each junc-
tion based on the statistics of the trajectories. For each trajectory Xi we
compute the 95% confidence ellipse ei = (ci, ai, bi,'i) of center ci, largest
(resp. smallest) semi-axis ai (resp. bi) and angle (with x-axis) 'i, of the
spatial spreading of its points, considering this distribution as normal. We
obtained the ellipse as follows [20]: first, we collected all points Xi(t) of the
trajectory into a 2 ⇥ n matrix O

i, then applied a Singular Value Decompo-
sition algorithm to the covariance matrix of Oi: U

i⌃i(V i)⇤ = cov(Oi) and
finally recovered the ellipse as:

ci =
1

Mi

Mi�1X

j=0

Xi(tj), ai =
q

5.991�i
1,1, bi =

q
5.991�i

2,2, 'i = arctan(
u
i
2,1

ui
1,1

),(46)

where �
i
1,1 and �

i
2,2 are the two eigenvalue of the matrix cov(Oi). We define

the confinement area Ai for a trajectory Xi as the area of the estimated
ellipse: Ai = ⇡aibi. The distribution of observed confinement areas is pre-
sented in Fig.S4g.
We now compare this distribution, with the expected distribution for a par-
ticle moving in a potential well. To this end for each trajectory Xi, we sim-
ulated eq. 39 with the estimated parameters µ̂i, ̂i, D̂i using Euler’s scheme
to obtain a trajectory Yi:

Yi(tk) = Yi(tk�1) + ̂i(Yi(tk�1)� µi)�t+

q
2D̂i�t⌘, (47)

where �t = 0.0001s is the simulation time-step, ⌘ = [⌘1, ⌘2] with ⌘1, ⌘2 ⇠
N (0, 1) is a white noise and Yi(t0) = µi. To prevent the choice of the first
point to influence the statistics, we run the simulation for 45000 time steps
before recording the trajectory. We then sub-sampled Yi by keeping one
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every 900 points to match the experimental acquisition time �t = 0.09s and
computed the confinement area of Yi using the same procedure as forXi. This
procedure was only applied to junctions for which ̂i > 0. The distribution of
confinement areas obtained from simulated trajectories is shown in Fig.S4g.

2 Characterization of ER tubule contractions

2.1 Extraction of tubule contraction statistics

Fast SIM images of ER in live cells, acquired and reconstructed as described
in methods, were rendered using the Edges look-up-table of the Fiji soft-
ware, with contrast settings to visualise one-pixel wide boundaries of the
tubules. Contraction sites were identified as such if the tubule edges bended
to merge more than once at the same position. In Fig.5g we report the dis-
tributions of three observable characteristics of contraction events extracted
from SIM images. The duration of a contraction event (Fig.5g left) is com-
puted as the di↵erence between the last and first frames for which the event
is detected; The time interval between successive contractions (Fig.5g mid-
dle) is computed for each individual tubule and pair of successive contraction
events as the di↵erence between the first frame of the second contraction and
the last frame of the first contraction; Finally the length of a contraction
(Fig.5g right) is computed by counting the number of pixels along the tubule
axis involved in the contraction.

2.2 Elementary model of tubule contraction

The relation between the ER constrictions inside the tubules and the flow
is suggested rather than correlative. To increase the evidences of this corre-
lation, we propose an elementary computation to link the contractions and
flow. Considering an incompressible ER luminal fluid, the conservation of
the mass is

@⇢

@t
= div(v⇢), (48)

where ⇢ is the fluid density and v the velocity at position x. When a con-
striction occurs, we suppose that it leads to a decreased volume Vc, that
generates a local flow. This flow can be obtained by integrating eq. 48 inside
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the tubule and we get:

dV

dt
= S2v2 � S1v1, (49)

where S2, S1 are the cross-sections at the right and left of the constriction
associated with a constant velocity v1 (resp. v2) on the surface (note that
we assume that there is no flow through the lateral surface of the tubule).
When S2 = S1, we obtain since v2 = �v1 (by symmetry), so that the initial
flow is given during the constriction phase by

v =
1

2S1

dV

dt
. (50)

Thus a constriction occurring in a cylinder of constant section ⇡r
2 along a

segment of size L = 300 nm during 15ms, leads to a velocity V = 0.3/0.03 =
10µm/s. To recover the velocity at the junction, we need now to model
how this change in the tubule shape contributes to the velocity of ejection
vexpelled.
A possible model is that the flow enters the node through a smaller section
than the radius of the tubule. Suppose that the size is r = 0.5rtub, then using
the mass conservation with this ratio of surfaces, we obtain a velocity at the
entrance of a junction of

ventrance =
S1

Sentrance
v, (51)

leading to a factor 4. Thus we obtain a velocity that could reach ventrance =
40µm/s, compatible with the maximum velocity we find for the ejection of
trajectories (Fig.2).
If the cross-section in the node at the two opposite tubules from the one
where the flow is generated are identical to the one receiving the flow, we
finally get the relation

vexpelled =
ventrance

2
⇡ 20µm/s. (52)

Fig.5h illustrates the consequence of a constriction: a local constriction gen-
erates a flow v in both directions. The flow leads to an acceleration at
the entrance of a tubule, if the entrance has a small surface. Due to the
flow conservation, the velocity of the expelled trajectory is of the order
20µm/s. Considering a pinch length of L = 100nm we obtain v ⇡ 3µm/s,
ventrance = 13µm/s, vexpelled = 7µm/s while for L = 400nm we obtain

v ⇡ 13µm/s, ventrance ⇡ 53µm/s and vexpelled = 27µm/s.
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2.3 Simultaneous contractions statistics

Under the assumption that contractions are spatio-temporally independent
events, the probability of a contraction follows a Poissonian distribution of
rate � such that

P{one contraction in [t, t+�t]} = ��t (53)

Thus the probability of n contractions during that time interval is a rare
event which probability is given by

P{n contractions in [t, t+�t]} =(P{one contraction in [t, t+�t]})n

=(��t)n.

Considering � = 1/fcontraction where fcontraction = 1.5Hz as given in Fig.5f
during a time step of �t = 100ms (the acquisition time of SIM images), then
P{one contraction in [t, t + �t]} = 0.15 and P{two contractions in [t, t +
�t]} = 0.0225 and thus can be neglected compared to one contraction.
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3 Tables

Pure Di↵usion Model Flow-Di↵usion Model

Dataset 1

(Main text)
Dapp = 1.13 µm2/s

Dnode = 0.19 µm2/s

µj = 22.9 µm/s

�j = 6.92 µm/s

 = 0.33

Dataset 2

(Fig.S3a)
Dapp = 1.02 µm2/s

Dnode = 0.35 µm2/s

µj = 23.19 µm/s

�j = 3.85 µm/s

 = 0.31

Dataset 3

(Fig.S3b)
Dapp = 4.10 µm2/s

Dnode = 0.57 µm2/s

µj = 45.01 µm/s

�j = 12.75 µm/s

 = 0.41

Table 1: Estimated motion parameters of the pure di↵usion and flow-di↵usion
models for the datasets presented in the main text and supplementary figures.

Datasets
Symbol Description Main text Fig.S3a Fig.S3b

VL Max. inst. vel. (µm/s) 9.5 10 19
R Max. neighbor distance (µm) 0.1 0.12 0.18
N Min. num. points in cluster 25 35 30

Table 2: Parameters used for fitting the network on the presented datasets.
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