4,218 research outputs found

    Examining School Connectedness And Communication With New American Parents

    Get PDF
    This tool highlights areas of importance for New American parents stemming from focus groups and invites schools to assess their communication and connectedness with New American students and families with the purpose to improve two-way channels of engagement

    Strain Hardening in Polymer Glasses: Limitations of Network Models

    Full text link
    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.Comment: 4 pages, 3 figure

    A refined estimate for the topological degree

    Get PDF
    We sharpen an estimate of Bourgain, Brezis, and Nguyen for the topological degree of continuous maps from a sphere Sd\mathbb{S}^d into itself in the case d2d \ge 2. This provides the answer for d2d \ge 2 to a question raised by Brezis. The problem is still open for d=1d=1

    Comment on On the Theory of Nuclear Resonant Forward Scattering of Synchrotron Radiation

    Get PDF
    Recently, in a paper by Kohn and Smirnov, a formula previously derived by Kagan et al. was developed to explain the forward scattering of gamma radiation by a nuclear-resonant sample excited by pulsed synchrotron radiation. Their derivation followed, directly, a procedure developed by Heitler, Harris, and Hoy. Previously, a completely different formula was developed by Hoy et al. to explain the same process. As a result, Kohn and Smirnov discuss the correctness and validity of the two models. In this Comment a detailed numerical comparison of the two theories has also been made. It is shown that their comparison is substantially inaccurate. The two models give essentially the same results. There is some small difference at times long after the synchrotron radiation pulse. If experiments of this type are used to extract nuclear parameters, either model will provide the same results. Either model will fit the experimental data well

    Gamma Echo Interpreted as a Phase-Shift Induced Transparency

    Get PDF
    In the gamma-echo technique a radioactive source is moved, with respect to a nuclear-resonant absorber, during the lifetime of first-excited nuclear state. This introduces a phase shift between the source radiation and the radiation from the absorber. If the source is moved abruptly, introducing a pi phase shift, the time-dependent intensity shows a sharp increase in the intensity at that time, the gamma echo. Using the recently developed one-dimensional quantum-mechanical model, based on the technique developed by Heitler and Harris, the gamma-echo effect is seen to be a phase-shift-induced transparency. A closed-form solution for the time-dependent transmitted intensity has been obtained. The solution has the form of a sum over coherent paths that the radiation takes in going from the radioactive source through the absorber to the detector. The model shows that the sharp increase in the intensity, the gamma echo, at the time when the source is moved abruptly is due to constructive interference, starting at that time, between the source radiation and the radiation from the absorber. The exact. form of the gamma-echo spectrum depends on the movement of the source. Shapes having multiple peaks are possible. All shapes can be found using the one-dimensional model

    Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening

    Full text link
    A simple theory for glassy polymeric mechanical response which accounts for large scale chain relaxation is presented. It captures the crossover from perfect-plastic response to strong strain hardening as the degree of polymerization NN increases, without invoking entanglements. By relating hardening to interactions on the scale of monomers and chain segments, we correctly predict its magnitude. Strain activated relaxation arising from the need to maintain constant chain contour length reduces the NN dependence of the characteristic relaxation time by a factor ϵ˙N\sim \dot\epsilon N during active deformation at strain rate ϵ˙\dot\epsilon. This prediction is consistent with results from recent experiments and simulations, and we suggest how it may be further tested experimentally.Comment: The theoretical treatment of the mechanical response has been significantly revised, and the arguments for coherent relaxation during active deformation made more transparen

    Auxiliary-field quantum Monte Carlo calculations of molecular systems with a Gaussian basis

    Full text link
    We extend the recently introduced phaseless auxiliary-field quantum Monte Carlo (QMC) approach to any single-particle basis, and apply it to molecular systems with Gaussian basis sets. QMC methods in general scale favorably with system size, as a low power. A QMC approach with auxiliary fields in principle allows an exact solution of the Schrodinger equation in the chosen basis. However, the well-known sign/phase problem causes the statistical noise to increase exponentially. The phaseless method controls this problem by constraining the paths in the auxiliary-field path integrals with an approximate phase condition that depends on a trial wave function. In the present calculations, the trial wave function is a single Slater determinant from a Hartree-Fock calculation. The calculated all-electron total energies show typical systematic errors of no more than a few milli-Hartrees compared to exact results. At equilibrium geometries in the molecules we studied, this accuracy is roughly comparable to that of coupled-cluster with single and double excitations and with non-iterative triples, CCSD(T). For stretched bonds in H2_2O, our method exhibits better overall accuracy and a more uniform behavior than CCSD(T).Comment: 11 pages, 5 figures. submitted to JC

    Age and sex-selective predation moderate the overall impact of predators

    Get PDF
    © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. Acknowledgements: Thanks to J. Reid, S. Redpath, A. Beckerman and an anonymous reviewer for their helpful comments on a previous version of the manuscript. This work was partly funded by a Natural Environment Research Council studentship NE/J500148/1 to SH and a grant NE/F021402/1 to XL and by Natural Research Limited. Forest Research funded all the fieldwork on goshawks, tawny owls and field voles during 1973–1996. We thank B. Little, P. Hotchin, D. Anderson and all field assistants for their help with data collection and Forest Enterprise, T. Dearnley and N. Geddes for allowing and facilitating work in Kielder Forest. In addition, we are grateful to English Nature and the BTO for kindly issuing licences annually visit goshawk nest sites. Data accessibility: All data associated with the study which have not already been given in the text are available from the Dryad Digital Repository: http://doi.org/10.5061/dryad.h1289 (Hoy et al. 2014).Peer reviewedPublisher PD
    corecore