2,898 research outputs found

    Thermal fatigue and oxidation data on TAZ-8A, MAR-M 200, and Udimet 700 superalloys

    Get PDF
    The fluidized bed technique was used to determine the relative thermal fatigue and oxidation resistance of three superalloys: TAZ-8A, Mar-M 200, and Udimet 700. The alloys TAZ-8A and MAR-M 200 were also tested in the directionally-solidified form. For the 13 combinations of composition, solidification method, surface protection, and specimen geometry, the cycles to cracking varied from 1250 to 15,000. The alloy/coating having the best resistance to thermal fatigue cracking was coated directionally-solidified NASA TAZ-8A. This combination also had excellent oxidation resistance

    Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)

    Get PDF
    The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight

    Polarized Neutron Matter: A Lowest Order Constrained Variational Approach

    Full text link
    In this paper, we calculate some of the polarized neutron matter properties, using the lowest order constrained variational method with the AV18AV_{18} potential and employing a microscopic point of view. A comparison is also made between our results and those of other many-body techniques.Comment: 23 pages, 8 figure

    Using Synthetic Spacecraft Data to Interpret Compressible Fluctuations in Solar Wind Turbulence

    Full text link
    Kinetic plasma theory is used to generate synthetic spacecraft data to analyze and interpret the compressible fluctuations in the inertial range of solar wind turbulence. The kinetic counterparts of the three familiar linear MHD wave modes---the fast, Alfven, and slow waves---are identified and the properties of the density-parallel magnetic field correlation for these kinetic wave modes is presented. The construction of synthetic spacecraft data, based on the quasi-linear premise---that some characteristics of magnetized plasma turbulence can be usefully modeled as a collection of randomly phased, linear wave modes---is described in detail. Theoretical predictions of the density-parallel magnetic field correlation based on MHD and Vlasov-Maxwell linear eigenfunctions are presented and compared to the observational determination of this correlation based on 10 years of Wind spacecraft data. It is demonstrated that MHD theory is inadequate to describe the compressible turbulent fluctuations and that the observed density-parallel magnetic field correlation is consistent with a statistically negligible kinetic fast wave energy contribution for the large sample used in this study. A model of the solar wind inertial range fluctuations is proposed comprised of a mixture of a critically balanced distribution of incompressible Alfvenic fluctuations and a critically balanced or more anisotropic than critical balance distribution of compressible slow wave fluctuations. These results imply that there is little or no transfer of large scale turbulent energy through the inertial range down to whistler waves at small scales.Comment: Accepted to Astrophysical Journal. 28 pages, 7 figure

    Thermal fatigue data on 15 nickel- and cobalt-base alloys

    Get PDF
    Thermal fatigue data on 15 nickel and cobalt base alloy

    Kinetic Scale Density Fluctuations in the Solar Wind

    Full text link
    We motivate the importance of studying kinetic scale turbulence for understanding the macroscopic properties of the heliosphere, such as the heating of the solar wind. We then discuss the technique by which kinetic scale density fluctuations can be measured using the spacecraft potential, including a calculation of the timescale for the spacecraft potential to react to the density changes. Finally, we compare the shape of the density spectrum at ion scales to theoretical predictions based on a cascade model for kinetic turbulence. We conclude that the shape of the spectrum, including the ion scale flattening, can be captured by the sum of passive density fluctuations at large scales and kinetic Alfven wave turbulence at small scales

    THE TRANSFORMATION SPECTRUM OF THE RUBY

    Full text link

    Evapotranspiration from Natural Vegetation in the Central Valley of California: Monthly Grass Reference-Based Vegetation Coefficients and the Dual Crop Coefficient Approach

    Get PDF
    Restoration activities in the Central Valley of California and elsewhere require accurate evapotranspiration information, which can then be used for a wide variety of surface and subsurface hydrologic evaluations. However, directly measuring evapotranspiration can be difficult or impossible depending on the evaluation’s time frame. Transferability of measured evapotranspiration in time and space is also necessary but typically requires a weather-based reference. For nonagricultural vegetation, there is at present time no standard reference, which makes the evaluation of a variety of vegetation types from different sources difficult and time-consuming. This paper examines several methods used to estimate evapotranspiration from native vegetation, including the use of vegetation coefficients (Kv). Vegetation coefficients are based on a standardized reference and are computed as the ratio of vegetation evapotranspiration (ETv) to the grass reference evapotranspiration (ETo). These monthly Kvvalues are used to compute the long-term (for this study, 1922–2009) average ETvfor vegetation types documented to exist in California’s Central Valley prior to the arrival of the first European settlers in the mid-18th century. For vegetation that relies on precipitation and soil moisture storage, a calibrated daily soil–water balance with a dual crop coefficient approach was used to compute evapotranspiration regionally over the time frame
    • …
    corecore