https://ntrs.nasa.gov/search.jsp?R=19710000553 2020-03-12T00:33:45+00:00Z

NASA CR-72738 IITRI-B6078-38

FINAL REPORT

THERMAL FATIGUE DATA ON 15 NICKEL- AND COBALT-BASE ALLOYS

by

Maurice A.H. Howes Metals Research Division

IIT RESEARCH INSTITUTE 10 West 35th Street Chicago, Illinois 60616

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

May 15, 1970

CONTRACT NAS3-9411

NASA Lewis Research Center Cleveland, Ohio John P. Merutka, Project Manager David A. Spera, Research Advisor ÷

FOREWORD

This report describes the work performed under NASA Contract NAS3-9411 on the project entitled "Thermal Fatigue Data on 15 Nickel- and Cobalt-Base Alloys." The report covers the period March 24, 1967, to May 20, 1970.

The NASA personnel assigned to this contract were:

John H. Deford and Leonard Schopen	-	Contracting Officers
John P. Merutka	-	Project Manager
David A. Spera	-	Research Advisor
R. J. Paginton	-	Contract Administrator

The IITRI personnel who contributed to this project include Maurice Howes (Project Manager), E. R. Porlier (Administrative Supervisor), R. K. Nolen, E. Marozas, T. Harbrecht, L. Hopkins, D. Pitcairn, P. Santora, H. Konjevich, R. Dragen, and V. Johnson.

Data are contained in Logbooks No. C17551, C17552, C17793, C18644, C18959, C19283, C19290, C19440, C19720, and C19960.

The IITRI internal designation for this report is IITRI-B6078-38.

Maunie aH Howes.

Maurice A.H. Howes Manager, Physical and Ferrous Metallurgy

Director

N. M. Parikh, Director Metals Research Division

TABLE OF CONTENTS

Page
• 1
. 2
. 3
. 3
. 4
. 4
. 5
. 6
. 8
. 9
. 10
. 10
. 10
. 10
. 10
. 11
. 13
. 14
. 14
, 15
. 17
. 18

Ċ

ABSTRACT

The fluidized bed technique has been used to measure the relative thermal-fatigue resistance of 15 superalloys B1900, IN-100, PWA 1401, X-40, WI-52, MAR-M 200, PWA 664, MAR-M 302, IN-162, IN-713C, M22, TAZ-8A, Udimet 700 (cast and wrought), and TD-NiCr. PWA 1401 and PWA 664 were directionally solidified. B1900, IN-100, and PWA 1401 were also tested with aluminum-10% silicon coatings. Among the 15 alloys, cycles to cracking differed by several orders of magnitude. Coatings and directional solidification were of definite benefit. Some alloys experienced serious weight losses and internal oxidation. This investigation is part of a general study of thermal fatigue conducted by the NASA-Lewis Research Center.

LIST OF TABLES

٠

•

•

.

		Page
1	Alloys and Variations Used in Test Program	19
2	Compositions of All Alloys Used in the Experimental Program	20
3	Location of "As-Cast" Macrographs of the Directionally Solidified Alloys	21
4	Tensile Properties at 1400°F	22
5	Creep-Rupture Properties at 1800°F	23
6	Heat Treatments for Specimens	24
7	Calibration Data for Instrumented IN-100 Specimens When Cycled Into the High Temperature Bed	25
8	Calibration Data for Instrumented WI-52 Specimens When Cycled Into the High Temperature Bed	26
9	Calibration Data for Instrumented MAR-M 200 Specimens When Cycled Into the High Temperature Bed	27
10	Calibration Data for Instrumented MAR-M 302 Specimens When Cycled Into the High Temperature Bed	28
11	Calibration Data for Instrumented Udimet 700 Specimens When Cycled Into the High Temperature Bed .	29
12	Calibration Data for Instrumented IN-100 Specimens When Cycled Into the Intermediate Temperature Bed	30
13	Calibration Data for Instrumented WI-52 Specimens When Cycled Into the Intermediate Temperature Bed	31
14	Calibration Data for Instrumented MAR-M 200 Specimens When Cycled Into the Intermediate Temperature Bed	32
15	Calibration Data for Instrumented MAR-M 302 Specimens When Cycled Into the Intermediate Temperature Bed	33
16	Calibration Data for Instrumented Udimet 700 Specimens When Cycled Into the Intermediate Temperature Bed	34
17	Inspection Points and Total Thermal Cycles for Each Alloy	35

LIST OF TABLES (Continued)

•

-

î

•

-

	Page
18	Summary of Crack Propagation for B1900
19 .	Summary of Crack Propagation for B1900-coated 38
20	Summary of Crack Propagation for IN-100 40
21	Summary of Crack Propagation for IN-100-coated 42
22	Summary of Crack Propagation for PWA 1401 44
23	Summary of Crack Propagation for PWA 1401-coated 45
24	Summary of Crack Propagation for X-40
25	Summary of Crack Propagation for WI-52
26	Summary of Crack Propagation for MAR-M 200 50
27	Summary of Crack Propagation for PWA 664 53
28	Summary of Crack Propagation for MAR-M 302 54
29	Summary of Crack Propagation for IN-162
30	Summary of Crack Propagation for IN-713C 58
31	Summary of Crack Propagation for M22 60
32	Summary of Crack Propagation for TAZ-8A 63
33	Summary of Crack Propagation for Udimet 700 (Cast) 65
34	Summary of Crack Propagation for Udimet 700 (Wrought)
35	Summary of Crack Propagation for TD-NiCr 70
36	Thermal Cycles Required to Initiate the First Crack in Each Edge
37	Summary of Specimens Sectioned for Metallography and SEM Fractography
38	Surface Hardnesses (Rockwell C) of Thermal Fatigue Specimens
39	Microhardness Measurements in Thermal Fatigue Sample Sections

vii

LIST OF FIGURES

.

-

:

.

		Page
1	Dimensions of Test Specimens Used in the Program	77
2	Macrographs of Grain Patterns in PWA 664	78
3	Macrographs of Grain Patterns in PWA 1401	81
4	Schematic View of Thermal Fatigue Facility	85
5	Fluidized Bed Air Requirements	86
6	Simulated Theraml Fatigue Specimen Utilized During Fixture Development	87
7	Temperature Gradient in Horizontally Held Specimens .	88
8	Temperature Gradient in Vertically Held Specimens	88
9	Distortion in a Stiffened Variation of the Fixture Shown in Figure 8 after 100 Cycles of Operation	89
10	Use of Location Slots in the Test Pieces with Top and Bottom Plates in the Vertical Plane	89
11	Fixture with Welded Channel Sections after 580 Cycles	90
12	New Fixture with Rolled Channel Section Slide Members	90
13	Final Form of Fixture as Used in the Program with Increased Section Bottom Plate and Top Retaining Plates	91
14	"C" Type Fixture After 100 Cycles	91
15	Calibration Curve for IN-100 Cycles under Set F Conditions	92
16	Appearance of Test Specimens at the Conclusion of Thermal Fatigue Cycling	93
17	Thermal Cycles to Initiate the First Crack Formed in Either Test Edge Under Test Conditions A to F	98
18	Crack Propagation Data for the First Crack Formed in Uncoated and Coated IN-100	111
19	Crack Propagation Data for the First Crack Formed in Uncoated and Coated PWA 1401	112

LIST OF FIGURES (Continued)

.

-

;

.

2

		P	age
20	Appearance of Crack Propagation Path in Thermal Fatigue Specimen	•	113
21	Root of Crack in Thermal Fatigue Specimens, Longitudinal Section	•	119
22	B1900, Coated Sample. Transverse Section Showing Crack Through Coating	•	127
23	IN-100, Coated Sample. Transverse Section Showing Crack Through Coating	•	127
24	IN-100, Transverse Section Showing Possible Crack Nucleation Points	•	128
25	PWA 1401, Transverse Section Showing a Possible Crack Nucleation Point	•	128
26	PWA 1401, Coated Sample, Showing Thermal Fatigue Crack Through Coating	•	129
27	IN-713C Sample Showing Possible Crack Nucleation Sites	•	129
28	X-40 Sample Showing Early Stages of Crack Propagation	n	130
29	WI-52 Longitudinal Section Showing Possible Crack Nucleation Sites	•	130
30	MAR-M 200 Longitudinal Section Showing Possible Crack Nucleation Sites	•	131
31	MAR-M 302 Longitudinal Section Showing Early Stages of Crack Propagation	•	131
32	M22 Longitudinal Section Showing a Possible Crack Nucleation Site	•	132
33	TAZ-8A Longitudinal Section Showing the Early Stage of a Crack	•	132
34	Cast Udimet 700 Longitudinal Section Showing Possibl Crack Nucleation Sites		133
35	Wrought Udimet 700 Logitudinal Section Showing Possible Crack Nucleation Site	•	133
36	PWA 664 Longitudinal Section Showing Subsurface Porosity as Possible Crack Nucleation Site	•	134

LIST OF FIGURES (Continued)

.

		Ρ	age
37	Transverse Section through the Original 0.025 in. Radius after Thermal Fatigue Testing for the Cycles Indicated.		135
38	Th O ₂ Dispersion in TD-NiCr Material Used in this Program	٠	137
39	ThO ₂ Dispersion in TD-NiCr Material Known to Have Satisfactory Properties	•	137
40	Appearance of Thermal Fatigue Fracture of IN-100 in the SEM	•	138
41	Appearance of Thermal Fatigue Fracture of MAR-M 200 in the SEM	•	138
42	Appearance of Thermal Fatigue Fracture of MAR-M 302 in the SEM	•	139
43	Appearance of Thermal Fatigue Fracture of TD-NiCr in the SEM	•	139
44	Appearance of Thermal Fatigue Fracture of Cast Udimet 700 in the SEM	•	140
45	Appearance of Thermal Patigue Fracture of Wrought Udimet 700 in the SEM		140
46	Weight Loss after 1000-Cycle Exposure,		141

SUMMARY

This investigation is part of a general study of thermal fatigue conducted by the NASA-Lewis Research Center. This program used the fluidized bed heating and cooling technique to measure the relative thermal fatigue resistance of 15 superalloys. These alloys included B1900, IN-100, PWA 1401, X-40, WI-52, MAR-M 200, PWA 664, MAR-M 302, IN-162, IN-713C, M22, TAZ-8A, Udimet 700 (cast and wrought), and TD-NiCr. Two alloys--PWA 1401 and PWA 664--were directionally solidified. Three--B1900, IN-100, and PWA 1401--were also tested with a diffused aluminum-10% silicon slurry coating. The resistance to cracking was measured by cycling specimens between fluidized beds at 1990°F (1088°C) and 600°F (316°C), examining the specimens for cracks at intervals, and measuring the lengths of the first three cracks to be formed. When sufficient crack propagation data were obtained, the specimen was removed from the test.

The most crack-resistant materials were those coated or directionally solidified: PWA 664, PWA 1401, PWA 1401--coated, and B1900--coated. Among the conventionally cast and uncoated materials, the most crack-resistant nickel-base and cobalt-base alloys were TAZ-8A and X-40, respectively.

Two alloys--PWA 664 and MAR-M 200--had the same composition but different grain structure and radically different resistance to thermal fatigue. Directionally solidified PWA 664 had very high resistance to cracking, while MAR-M 200 showed poor resistance. This indicates that grain structure is at least as important as the composition of the superalloy.

Examination of the crack paths and fracture surface showed that the cracks tend to follow intergranular paths (with the possible exception of TAZ-8A and the cobalt-base alloys). Oxidation proceeds as cracks are formed, and the oxidation products are observed for the whole length of the crack. It is possible that oxidation at the surface grain boundaries occurs before cracking, particularly in the nickel-base alloys. The oxidation causes serious material loss during cycling on some alloys. However, it is shown that coatings can significantly reduce oxidation and metal loss.

INTRODUCTION

The purpose of the present work is to use the fluidized bed technique to measure the relative thermal fatigue cracking resistance of fifteen high-temperature superalloys that could be used for advanced air breathing engines. The study includes metallographic and hardness studies before and after thermal fatigue testing. The work was carried out in a facility designed and built by IIT Research Institute.

This investigation is part of a general study of thermal fatigue being undertaken by the NASA-Lewis Research Center. Other parts of the study and the possible use of the data are described by Spera.⁽¹⁾

Thermal fatigue is a possible failure mechanism in any situation that involves fluctuating temperatures. If certain materials are heated or cooled rapidly, cracking sometimes occurs. The phenomenon, which is often called thermal shock, is caused by thermal gradients present during rapid temperature change. As a result, strain is produced which is related to the coefficient of expansion of the material. Failure occurs when thermally induced stresses exceed the strength of the material after starting as a crack in the most sensitive area. In metals, the thermal fatigue mechanism often results in the gradual formation of a network of cracks and is commonly referred to as craze cracking, heat checking, or fire cracking. Any part which undergoes temperature cycling during service is likely to fail by this mechanism.

Failures due to thermal fatigue can be found in brake drums, turbine blades, internal combustion engine pistons, rolls for forming hot steel, forging dies, railway wheels, furnace components, and in molds used for glass and metal molding. Thermal fatigue can become the dominant failure mode in aircraft gas turbine engines as the operating temperature and thermal gradients become more severe and the expected service life becomes longer.

Many methods of heating and cooling have been used to simulate the thermal cycles experienced in actual applications. Some of the earliest work used direct flame impingement on a surface. However, unless carefully controlled, the combustion products and variation in temperature conditions can introduce an arbitrary environment which can influence the cracking mechanism.

High-frequency heating and electrical resistance heating systems can be used to establish simulated thermal cycling conditions; however, they are generally expensive to construct for the multi-station test facilities which are needed to amass data quickly. In the consideration of thermal fatigue,

2

the crack propagation rate is as important as the start of cracking. For instance, a material that cracks early might be satisfactory if the crack propagation rate is very slow. With high frequency and resistance heating, the formation of a crack alters the flux or current density in such a way that the crack is overheated and measurement of propagation rate becomes meaningless.

The fluidized bed heating system for thermal fatigue testing has many advantages and no significant disadvantages. The bed construction is simple and relatively inexpensive. The rate of heat transfer to a specimen or group of specimens is high. The heat content of a particulate solid fluidized media is also high, so that a large number of specimens or a large specimen can be rapidly and repeatedly heated without lowering the bed temperature significantly. The fluid bed system uses low-velocity air flows (in the order of 1 fps), and in this respect the high-velocity gas flows in a turbine engine are not simulated. The first reported use of fluidized beds for thermal fatigue testing was in 1958 by Glenny and co-workers. Since that time there have been many reports of the use of this technique to evaluate thermal fatigue resistance. (3-11) A bibliography of the literature of thermal fatigue up to 1967 was compiled by Carden. (12)

The original high-temperature bed described by Glenny was 6 in. in diameter and was heated by wire-wound elements of 4 kw total input. For this program much heavier loads of test specimens had to be cycled, and a bed diameter of 11.5 in. with a power input of 55 kw was required. The low-temperature bed was controlled at an intermediate temperature instead of room temperature; thus the lower temperature beds were required to have provisions for both heating and cooling. These features are described in the section under Experimental Work which deals with the thermal fatigue facility.

EXPERIMENTAL WORK

Materials and Conditions

Eighteen variations of alloys and treatments were studied in this program. These are listed in Table 1. Thirteen different material compositions were used as shown in Table 2. The main variations, apart from composition, are directional solidification and surface coating.

Both IN-100 and MAR-M 200 were used in the directionally solidified condition. These were cast according to PWA 1401 and PWA 664 specifications, respectively.

The alloys coated were B1900, IN-100 and PWA 1401. The coating used was PWA 47 (Jo-Coat). This is a proprietary coating of Pratt and Whitney Aircraft Division, United Aircraft Corporation. The only information available is that Jo-Coat is *e* slurry-sprayed coating having a composition of aluminum-10% silicon. This coating is subsequently heat treated.

Two types of test pieces were produced:

- 1. A tapered thermal fatigue test piece for use in this program.
- 2. A uniaxial tensile and stress-rupture test piece for use by NASA-Lewis Research Center.

These test pieces are shown in Figure 1. The thermal fatigue test piece was produced in all eighteen variations of material and treatment. The uniaxial test piece was produced in all variations except PWA 664.

The two directionally solidified materials--PWA 1401 and PWA 664--were cast oversize and machined to size. The grain patterns in the as-cast condition are shown in Figures 2 and 3. The directionally solidified specimens were individually identified in order that the results might be considered in relationship to the original macro grain structure. The specimens used in each set and the figures giving the macrostructure are indicated in Table 3.

All other test pieces in cast materials were cast to size. The test pieces in wrought Udimet 700 and the TD-NiCr were machined to size. Owing to delivery difficulties the TD-NiCr material was supplied from two different heats. However, they are believed to have identical mechanical properties. Heat No. 2858 was used for sets A to D while heat No. 1852 was used for E and F. The identities of all test pieces were maintained throughout testing in case the heat was a source of variation of results. Tensile properties at 1400°F (760°C) and creeprupture properties at 1800°F (982°C) were obtained by NASA-Lewis using the uniaxial specimens. The results are given in Table 4 and 5. The creep-rupture results for IN-713C, M22, and TD-NiCr are significantly lower than average published data.

Heat Treatment

The heat treatments used for all specimens are shown in Table 6. All heat treatment was carried out in an argon atmosphere.

Thermal Fatigue Facility

A schematic drawing of the thermal fatigue testing facility is shown in Figure 4. It consists of a 11.5 in. diameter high-temperature bed situated between two 14 in. diameter intermediate-temperature beds.

The center high-temperature bed has either an Incone! retort or a silicon carbide retort, depending on the maximum temperature requirements, and a stainless steel air-diffuser box supplied with air from a low-pressure blower. The bed is heated by 12 silicon carbide elements with a total power of 55 kw. Heat insulation is provided by two layers of refractory insulating brick and 1 in. of Fiberfrax.

The intermediate beds are double walled, with a stainless steel liner and a 1 in. insulation of Fiberfrax. Heating is provided by three Calrod elements (total power of 12 kw for each bed) situated above the stainless steel air box. For cooling, the heat exchanger can be either a multi-tube, water-cooled copper assembly (left bed, Figure 4) for bed temperatures up to 400°F or an air-cooled stainless steel jacket (right bed, Figure 4) for bed temperatures above 400°F. These heat exchangers are interchangeable. For all work carried out on this program, the air-cooled heat exchanger was used.

The specimens are cycled by means of automatically controlled pneumatic cylinders which are sequenced by timers and limit switches. The facility will cycle automatically for the number of cycles selected.

The air supply for fluidization is controlled through flow-meters for each bed. The maximum fluidization air demand is about 3500 cu ft/sq ft/hr (3500 cfh) for each of the intermediate beds at 100°F and 900 cu ft/sq ft/hr (600 cfh) for the high-temperature bed at 2000°F. Less inlet air is required as the bed temperature is increased due to the expansion of the air as it passes through the bed. Tests show that the fluidization range is fairly narrow since the bed will rapidly empty if excessive air is used. For high heat transfer coefficients the bed should be worked at just below the maximum air flow curve in Figure 5.

Each bed is fitted with four thermocouples for control, over-temperature protection, low-temperature test cutoff, and recording purposes.

Facility Performance

The high-temperature bed will operate at 2300°F (1260°C) using a silicon carbide retort and could be run at this temperature for testing small samples. However, as the weight of the specimen load in pounds per hour is increased, the maximum permissible bed temperature must be decreased. Otherwise the temperature of the heating elements would exceed the maximum permissible value of 2750°F (1510°C). With a specimen load of 15 lb, the maximum bed temperature is about 2000°F (1204°C) with a constant input of about 45 kw. At below 200°F bed temperature, the Inconel retort may be used.

The intermediate beds will run at a maximum temperature of 800°F (427°C). When cooling a 15 lb load from 200°F every 4 min, the air-cooled and water-cooled heat exchangers will hold the bed temperatures at 400°F (204°C) and 200°F (83°C), respectively.

Thermal Fatigue Fixture--Development and Evaluation

A satisfactory fixture for holding the specimens must meet several requirements. It should have a reasonable degree of creep and thermal fatigue resistance, and be relatively simple to fabricate. The fixture should support the specimens in such a manner so as not to interfere with uniform heating and cooling of all specimens. The fixture design should ensure that its thermal expansion and contraction does not distort the test pieces. Therefore, several designs and materials were investigated to discover the best design.

Simulated specimens of type AISI 304 stainless steel were used throughout the initial fixture design study. Figure 6 shows the dimensions of the specimen. At the start of development, two fixtures were designed and fabricated--one to support the specimens horizontally (Figure 7), and the other to support them vertically (Figure 8). The material was AISI 304 stainless steel. Each fixture with 20 specimens was thermal-cycled in fluidized heating and cooling beds, with a 2 min dwell in each bed. The maximum bed temperature was 1950°F (1066°C) with a minimum temperature of 400°F (204°C). After 20 cycles, the fixture for holding the specimens horizontal showed little or no distortion. However, a temperature gradient in the specimens was observed (Figure 7), with the center 1 in. critical test area of the top specimen being considerably darker in heat color (1500°F) than the outer portions (1850°F). This dark region "fanned out," such that the entire bottom specimen was only approximately 1400°F-1500°F. This temperature gradient was probably due to the wide bottom plate of the fixture. The plate was an inch wider 1500°F. than the specimens, and this was sufficient to impair proper fluidization around the specimens. This design was discarded in favor of the one which held the specimens vertically.

The vertical-specimen fixture was tested in the manner described above, and it was found to cause a temperature gradient in the bottom inch of the specimens (Figure 8). Here again, the bottom plate shielded the specimens from the direct vertical action of the fluidizing media. With either fixture, thermal equilibrium (no thermal gradient) could only be attained by a longer heating cycle. In addition to the slight gradient produced, the top and bottom plates of the vertical fixture distorted, with the bottom distortion more severe. In an attempt to remedy this situation, triangular ribs were welded to the straightened bottom plate. Figure 9 shows the condition of the fixture and specimen after 100 thermal cycles. The end bolts bent, and one fractured in the threads. This fixture has two inherently undesirable features--namely, gross distortion occurs in a relatively few cycles, and the bottom plate restricts fluidization thus causing a temperature gradient from one specimer. to another and along the span of a given specimen.

At this point in the fixture development program a new approach was taken. The primary concern was that of obtaining uniform heating and cooling of all specimens. Therefore, the top and bottom plates of the fixture had to be changed. A round notch was machined into the ends of the specimens (Figure 1) in order that they could be supported by plates in the vertical plane. This eliminated the shielding effect and produced more uniform heating of the fixture itself. Figure 10 shows the scheme used. Very uniform heating was attained in both the specimens and the fixture. However, after 100 cycles the side members were somewhat bowed.

After straightening the sides of the fixture shown in Figure 10, strips of the same width and thickness were welded to the sides to form channels and the fixture was bolted together as shown. Figure 11 shows this modification of the fixture after cycling the specimens 580 times. A very small amount of distortion is seen. The fracture through the top bolt hole is perhaps due to the lack of sufficient material above it. This fixture showed the most promise and therefore was further considered with some modifications.

Figure 12 shows the modified fixture prior to thermal cycling. The two vertical end pieces are standard 1 in, x 2 in, AISI 304 stainless steel channel sections. The top and bottom plates are wrought, heat-treated Udimet /00. After some 1000 thermal cycles this fixture too showed some distortion. The top and bottom plates had two-dimensional distortion, such that the plates had to be flame-straightened. Auxiliary plates were bolted to the top plate to restrain the specimens if the fixture became unduly distorted while cycling. These added plates did not affect the uniform heating, The maximum temperature to which the fixture is subjected is so severe that even the Udimet 700 superalloy has to be straightened after each 400-500 cycles. The latest design and the one which is the most satisfactory has a bottom plate machined from Inconel 600 stock. The top plate is identical to that shown in Figure 12. The added thickness and modified shape increased the rigidity. Figure 13 shows the fixture after

150 cycles with the auxiliary top plates and also the thicker bottom plate. The superalloy test specimens were cycled using this fixture.

During this fixture development phase and simultaneously with the design of other fixtures, a somewhat different approach was taken. On the theory that perhaps the previous fixtures may have been too bulky and constructed in such a manner as to induce distortion, a different shaped fixture was designed and tested. Figure 14 shows this fixture after 100 cycles. The distortion caused the end specimens to bend, and further cycling would cause all the specimens to fall from the fixture. This design was abandoned in favor of the fixture shown in Figure 13.

During the latter stages of testing, fewer samples were run at one time because sufficient data had been accumulated on the other samples. For these tests a fixture of the same design but holding 10 specimens (2 dummies + 8 actual test specimens) was used. This fixture was less subject to distortion and was more suited for long runs involving a high number of cycles. The smaller capacity fixture with 10 specimens weighed 9.9 lb as compared with 14.7 lb for the 20-specimen fixture. Since the difference in fixture weight is negligible compared with the weight of alumina used in the bed (approximately 250 lb); the heating and cooling conditions are not affected.

Test Conditions

Six sets of specimens were cycled. Each set consisted of 18 thermal fatigue test pieces, as listed in Table 1, with a dummy stainless steel sample at each end to eliminate end effects.

Specimens were always placed in the fixture in the same order--i.e., IN-713C, M22, TAZ-8A, WI-52, B1900 coated, B1900, MAR-M 302, In-162, PWA 664, MAR-M 200, wrcught Udimet 700, cast Udimet 700, IN-100, PWA 1401 coated, PWA 1401, TD-NiCr, and X-40. The 0.025 in. radius edges were all on the same side of the fixture. These fixed positions were maintained for convenience in inspection. Previous investigations by IITRI have shown that position ir the fixture does not have any particular effect on therma. fatigue life. The following bed temperatures and fluidizing conditions were maintained constant through the entire test series:

	Temper	ature	Air F (Measured a 2 psi pre	at 150°F,
	°F_	°C	$ft^3/ft^2/hr$	$m^3/m^2/hr$
Hot bed	1990	1088	900	275
Intermediate bed	600	316	2100	640

The fluidized media was 28-48 mesh tabular alumina.

The time of immersion in each bed was varied in each set as follows:

	1	lime, min
Set	Hot Bed	Intermediate Bed
A & B	2.0	2.0
С	2.5	2.5
D	3.0	3.0
E	3.5	3.5
F	4.0	4.0

Measurement of Transient Temperatures

The transient temperatures achieved during the cycling of sets A (or B), D, and F were established using instrumented specimens, each fitted with five thermocouples. The couple positions are shown in Figure 1. Five alloys were calibrated in this way: IN-100, WI-52, MAR-M 200, MAR-M 302, and Udimet 700 (wrought). The thermocouples were magnesium oxide insulated, Inconel 600 sheathed, ISA type K (Chromel/Alumel) with an outside sheath diameter of 0.020 in. These couples were fabricated to meet specifications MIL Q-9858 and ASTME-235. The couples were run in grooves milled in the surface of the specimen. Grooves were 0.022 in. wide and 0.020 in. deep. The thermocouples were secured in place using an air-setting two-part Allen P-1 ceramic cement. After curing at 600° F (316° C) an adherent bond is formed sufficient to hold the thermocouple in place. Temperatures were recorded on a multichannel high-speed recorder.

Typical curves obtained for IN-100 using a 4 min immersion time in each bed are shown in Figure 15. The effect of longer immersion times is to increase T_{max} and decrease T_{min} . Complete tabulated data are shown in Tables 7 to 16.

Inspection of Specimens During Testing

The specimens were removed at regular cycle intervals, and both edges were examined for cracks using a 30X microscope. When a crack was discovered, the length from crack tip to specimen edge was measured on both sides of the specimen and the average taken as the crack length. Measurement was made on a traveling microscope.

Table 17 summarizes the inspection points and total cycles that each specimen underwent during test.

When sufficient crack data were obtained, the specimen was removed from the fixture and replaced by a stainless steel dummy specimen.

At the later inspection points a Rockwell C hardness reading was taken on the surface of each specimen.

Metallography

At the end of the test program selected samples from sets C, D, and F were sectioned for metallography. The section containing the crack was cut from the specimen and ground carefully down to the center plane. The specimen was mounted in a thermo-setting plastic and prepared in the conventional way using automatic polishing, and finishing on a microcloth wheel with 0.05 micron abrasive powder. The nickel-base alloys were electrolytically etched in 10% phosphoric acid using about 1 1/2 v for 3 seconds. The cobalt-base alloys were etched electrolytically in a mixture of hydrochloric and acetic acid (approximately 6 v for 10 seconds).

Scanning Electron Microscopy

Selected fracture faces were separated by cutting through the tip of the crack so that one face could be viewed normally. The specimen was placed in a JSM-2 scanning electron microscope without further preparation. An operating voltage of 25 kw was used and examination made in the range 30 to 10,000X.

RESULTS

Thermal Fatigue Data

Complete crack propagation data are contained in Tables 18 to 35. Data are given as crack length versus cycle number for a maximum of three cracks. The appearance of the specimens after testing is shown in Figure 16.

The number of cycles required to initiate cracks was of primary interest in this study. There are several ways of determining this number which cannot be measured directly. Glenny(2) used the procedure of averaging the cycles between the last inspection cycle to show no crack and the first inspection when the crack was observed. A refinement of this method is to plot crack length versus cycle number and extrapolate to zero crack length. This later procedure is of particular value when the test section is of constant thickness and the crack length versus cycle number curves approximate to straight lines. The wedge section specimen used in this investigation results in curved crack propagation curves and maked it difficult to accurately extrapolate the curves to zero crack length. The averaging method of Glenny has been used in this investigation, and the cycles to initiate the first crack in each alloy are summarized in Table 36. Data from Table 36 are presented graphically in Figure 17.

One consideration beyond the initiation of crack cycles is the crack propagation rate. Inspection of Table 36 shows that crack propagation rates do vary in different materials. Crack propagation data for uncoated and coated IN-100 and PWA 1401 are shown in Figures 18 and 19. Crack propagation is particularly slow in the directionally solidified alloys (compare Figures 18 and 19). However, there is a tendency in these materials for small cracks to start from the locating grooves at the ends of the specimens. This results from the fact that the grain structure is highly directional. An extreme case of this is presented by some of the TD-NiCr samples which at the conclusion of testing were in danger of splitting into two parts. The presence of these splits would lower the stresses at the test edges.

In some cases the 0.040 in. test edge initiated cracks before the 0.025 in.edge. This was probably due to weaknesses in the 0.040 in. edge causing preferred initiation. Once a crack was well established, it is probable that the stresses were relieved sufficiently to delay crack initiation in the opposite edge. It was also noticeable that when several cracks propagated they did so at regular intervals along the specimen. When one crack formed, it relieved the stresses locally and thus prevented another crack forming within the immediate neighborhood of the first crack.

Metallography

A total of 50 specimens were sectioned for metallographic work. In most instances cracks between 0.100 and 0.300 in. in length (2.5-7.5 mm) were selected for examination. Cracks from both the 0.025 in. radius and the 0.040 in radius were examined, as well as longitudinal sections parallel to the mid-chord plane of the specimen. All the sections containing cracks were made on the mid-thickness plane. In certain cases complete cross-sections were taken. Table 37 summarizes the specimens sectioned for metallography. All the photomicrographs presented are from specimens from set D with the exception of certain directionally solidified sections. Set D represents the intermediate time exposure in the fluidized beds. The other samples examined showed essentially the same metallographic features.

The appearance of typical thermal fatigue cracks in the 0.025 in. radius are shown in the Figure 20 series at low magnification (20X). It will be seen that the cracks in most of the nickel-base alloys appear to be following a predominantly intergranular path. The cobalt-base alloys (X-40, WI-52, and MAR-M 302) have straighter crack paths with less evidence of an intergranular path. WI-25 tends to form very wide cracks, as may be seen from an examination of the actual specimens (Figure 16).

The crack roots for the same sequence of samples in Figure 20 are shown in Figure 21 in the etched condition. All the nickel-base samples show areas of alloy depletion along the edge of the crack probably due to oxidation. All cracks show the presence of oxide within the crack usually extending to the end of the crack. Many of these photomicrographs show clearly that the crack is following a grain boundary or other structural discontinuity.

Perhaps the most significant series of micrographs are Figures 22 to 36. These figures show the edges of the longitudinal and some transverse sections of the thermal fatigue specimen surfaces including the coating, where present. The objective was to examine the surface of the specimens for sites of possible crack nucleation. In this way it was hoped to discover something of the mechanism that initiates cracks.

All the nickel-base alloys show a uniform layer of alloy depletion at the surface. At positions adjacent to grain boundaries, the depletion layer is deeper, tending to follow grain boundaries. This can be seen most clearly in Figures 24, 27, 30, 34, and 35. There is little doubt that this process continues with increased thermal cycling. If the material is weaker at one location than the surrounding material, a crack can initiate. Once the crack's growing, depletion continues ahead of the crack and tends to follow grain boundaries.

Figures 22, 23, and 26 show coated samples. It appears that the coating is less effective on the B1900 (Figure 22) than on the IN-100 material in preventing surface oxidation.

12

Fissures develop through the coatings and allow oxidation of the base metal but at a much slower rate.

In general, the directionally solidified alloys show far fewer surface discontinuities to allow penetration of oxide (compare Figures 24 and 25). However, the PWA 664 specimen examined (Figure 36) showed subsurface porosity which could nucleate thermal cracks. The surface carbide in Figure 25 was not typical of this alloy but shows a feature that may start a crack after thermal cycling.

The photomicrographs of the cobalt alloys (Figures 28, 29, and 31) are more difficult to interpret. There is obvious surface penetration, but the structures are totally different. There is probably also some alloy depletion, but it is less visible in these alloys. The grain size of the X-40 specimens was much smaller than the other alloys.

Transverse sections through the 0,025 in, radius test edge of selected specimens are shown in Figures 30a-c. The coating on IN-100 and B1900 specimens shows definite deterioration (see Figures 37a and 37c). Erosion of the uncoated samples can be clearly seen (compare the edge radius of 37b and 37d with 37a and 37c). The metal loss from erosion has been significant; this will be discussed in the later section, "Oxidation."

Creep tests performed by NASA on the TD-NiCr (Table 5) indicated that the properties were much lower than expected when compared to the nominal properties of 0.060 in. (1.5 mm) sheet of the same alloy. This could be because the material was supplied in the relatively thick section of 0.250 in. (6.3 mm). Figure 38 shows the unetched structure of the TD-NiCr used in this program, while Figure 39 shows the structure of a 0.060 in. thick sample of TD-NiCr. The difference in ThO₂ distribution is immediately apparent.

Scanning Electron Microscopy (SEM)

Thermal fatigue fractures of six materials were examined using the SEM. Magnifications of 30 to 10,000X were used. A selection of electron micrographs is presented in Figures 40 to 45.

Many photographs give evidence of considerable crack branching and intergranular fracture (see Figures 40a, 41a, 41b, 42a, 42b, 44a, 45a, and 44b). At higher magnification the IN-100 (Figure 40b) shows evidence of particles, probably carbides, pulling out of the fracture. The MAR-M 200 (Figure 39b) shows the presence of a heavy oxide on the surface of the fracture probably mixed with carbide particles. The same effect is seen in the MAR-M 302 (Figure 42). The TD-NiCr gives evidence of large thoria particles (Figure 43), the structure having high ductility around these particles. The Udimet 700 samples show clearly the intergranular nature of the fracture (Figures 44a and 45a). At higher magnifications there are oxide particles on the fracture (Figures 44b and 45b).

All the fractures show a high degree of "dimple" type fracture indicative of a ductile fracture with the possible exception of the MAR-M 302 (Figure 42), which apparently has large areas of cleavage.

Hardness Measurements

mardness measurements were made on the thermal fatigue samples using the Rockwell C hardness scale. The measurements were made along the mid-chord of the samples in the same area as thermocouple No. 3 (Figure 1). The hardness results are given in Table 38. In most instances there is a tendency for the hardness to decrease with extended thermal cycling.

Microhardness surveys were carried out on the sections of tested specimens prepared for metallographic analysis. Hardness readings on tested material were taken in five positions and are listed in Table 39:

- Near the surface (approx. 0.003 in. from surface)
- Near the surface and a major crack (approx. 0.003 in. from each)
- 3. 0.100-0.150 in. below the surface
- 4. Near crack tip (approx. 0.003 in. beyond the tip)
- 5. On nickel-base samples only, in the whiteetching layer adjacent to the crack.

There is a tendency for the hardness to be lower near the surface than in the bulk of the material, the only major exception being MAR-M 302. The hardness near the crack does not differ significantly from that in areas away from the crack. The white-etching layer differs in hardness from the bulk material, but sometimes it is harder and other times softer than the nearby material.

Oxidation

It became obvious after prolonged cycling of the thermal fatigue specimums that considerable erosion of some specimens was occurring. The extent of this erosion is shown in Figures 37b and 37d, where the original profile has been drastically modified. In some of the alloys oxidation and erosion were so pronounced that it was decided to take weight-change data. Since this was not part of the original program, starting weights had not been measured. It was necessary to estimate these starting weights, using duplicate untested specimens as a guide. Weight change expressed as percent loss in 1000 cycles is shown in Figure 46. It will be seen that the percent loss increases with the maximum surface temperature reached during the thermal cycle.

The IN-100 and PWA 1401 showed the greatest loss, followed by PWA 664 and MAR-M 200. All other specimen weight losses were less than 1%. These oxidation results are for low-velocity air flow conditions.

DISCUSSION

The primary objective of this program was to measure the relative thermal fatigue cracking resistance of the 18 combinations of materials, casting conditions, and coating. Cracking resistance can be based on the projected number of cycles required to initiate the first crack (Table 36). For example, if the resistance after a 3 min exposure is selected, the following ranking is obtained as a measure of thermal fatigue crack resistance:

Rank	Alloy	Cycles to First Crack <u>(3 min exposure)</u>
l (Highest)	PWA 664	4700
2-3	PWA 1401, coated PWA 1401	2400
4	B1900, coated	1190
5-6	TAZ-8A X-40	600
7-9	IN-100, coated B1900 IN-162	400
10-11	IN-713C TD-NiCr	250
12-14	WI-52 MAR-M 302 Udimet 700 (cast)	75
15	IN-100	38
16-18	Udimet 700 (wrought) M22 MAR-M 200	13

In considering this order, it should be noted that the number of cycles to cracking spread over a range of 2 to 2-1/2 orders of magnitude. But some results are close, and the difference of one or two places in the order may not be significant. One of the most important facts is that PWA 664 and MAR-M 200 are at or near the extremes of the table. These alloys have identical compositions, the difference being that PWA 664 is directionally solidified. It is probable that small changes in alloy composition are not as important for thermal fatigue resistance as is the structure. This observation has been made in several unpublished investigations by IITRI concerning medium carbon steel and tool steels. The structure that is under test is probably more important than minor compositional variations.

In considering individual results, the TD-NiCr sample probably did not fail in the 0.040 in. edge because the large, rapidly propagating cracks in the 0.025 in. edge relieve the stresses in the 0.040 in. edge.

In some cases the cycles to crack initiation for specimens tested at 3-1/2 min were higher than the general trend of data would indicate. Further analysis of the results will be attempted to verify the validity of these results although the effect is not believed to be due to experimental error.

The metallographic work, confirmed by the SEM, shows that the fractures are mainly intergranular and follow structural discontinuities. A significant feature seems to be the formation of the white-etching layer both on the specimen surface and on the side of the thermal cracks. This layer could be due to the loss of some elements by diffusion outwards or by the diffusion of oxygen inwards. The increase in hardness of this white layer suggests that some oxygen could be diffusing into the metal. This may produce a brittle layer which would aid crack propagation.

The results show that either directional solidification or coating can be very successful in delaying cracking-the former by producing fewer surface microscopic features that might nucleate a crack, and the latter by minimizing surface oxidation. It is interesting to note that the use of a coating on a directionally solidified alloy (PWA 1401) did not markedly delay thermal fatigue cracking. However, the coating substantially reduced weight loss by oxidation. In the absence of transverse grain boundaries, it is possible that as material is removed during thermal cycling by oxidation, crack nucleation sites are also removed. Since oxidation seems to be an important factor in the cracking mechanism, it is possible that tests in higher velocity airstreams might significantly change the number of cycles required to initiate a crack.

CONCLUSIONS

The purpose of this investigation was to use the fluidized bed heating and cooling technique to measure the relative thermal fatigue cracking resistance of 18 combinations of superalloy composition, casting technique, and coating.

The longest thermal fatigue lives were obtained with materials that had been either directionally solidified or coated: PWA 664, PWA 1401 (coated), PWA 1401, and B1900 (coated). Intermediate thermal fatigue lives were obtained with conventionally cast uncoated nickel-base alloy TAZ-8A and uncoated cobalt-base alloy X-40. These conclusions are based on preliminary examination of the raw data. A more complete analysis of the data is required before a final ranking can be made. This should be undertaken together with an analysis of new data on these alloys presently being generated.

The longest and shortest lives, as rated on the 3 min immersion time were obtained with materials which had the same composition (PWA 664 and MAR-M 200). Evidently, structure of the superalloy is more important than minor compositional changes.

Examination of the crack paths and fracture surfaces shows that the cracks tend to follow an intergranular path (with the possible exception of the cobalt alloys and TAZ-8A). There are many branching cracks found as propagation continues.

During thermal cycling, oxidation occurs resulting in a white-etching layer on the surface and along the sides of the cracks. This layer appears to precede the crack and to favor an intergranular penetration route. There is reason to believe that oxidation at a grain boundary at the surface precedes crack initiation particularly in the nickel-base alloys.

Cyclic oxidation occurs at the same time as thermal cycling, and some materials suffer considerable material loss. There is an indication that the directionally solidified materials oxidize to a greater extent than the same alloy in the conventionally cast form.

17

REFERENCES

- 1. Spera, D. A., Aerospace Structural Materials, NASA-SP-227, Nov. 1969, pp. 43-57.
- 2. Glenny, E., et al., J. Inst. Metals, <u>84</u>, 1958-1959, 294.
- Glenny, E., and Taylor, T. A., J. Inst. Metals, <u>88</u>, 1959-1960, 449.
- 4. Glenny, E. and Cox, M., The Engineer, <u>210</u>, 1960, 346.
- 5. Glenny, E. and Taylor, T. A., J. Inst. Metals, <u>89</u>, 1960-1961, 439 (Discussion).
- 6. Glenny, E., Metals Rev., <u>24</u>, 1961, 387-465.
- 7. Glenny, E., Ph.D. Dissertation, University of London, 1962.
- Franklin, A. W., et al., J. Inst. Metals, <u>92</u>, 1963-1964, 305
- 9. Glency, E. and Northwood, J.E., Foundry Trade J., <u>119</u>, 1965, 607.
- 10. Glenny, E. and Restall, J. E., J. Less-Common Metals, <u>9</u>, 1965, 367.
- 11. Northwood, J. E., et al., J. Less-Common Metals, <u>14</u>, 1968, 157.
- 12 Carden, A. E., Rep. MH67-AEC-3, NASA Grant NsG-381, Aug. 1967.

ALLOYS AND VARIATIONS USED IN TEST PROGRAM

- 1. B1900
- 2. B1900 with Jo-Coat (PWA 47)
- 3. IN 100
- 4. IN-100 with Jo-Coat
- 5. PWA 1401 (directionally solidified IN-100)
- 6. PWA 1401 with Jo-Coat
- 7. X-40
- 8. WI-52
- 9. MAR-M 200
- 10. PWA 664 (directionally solidified MAR-M 200)
- 11. MAR-M 302
- 12. IN-162
- 13. IN-713C
- 14. M22
- 15. TAZ-8A
- 16. Udimet 700 (Cast)
- 17. Udimet 700 (Wrought)
- 18. TD-NiCr

	Cast							Composition,		wt%		c	c	Of Box
Alloy	Number	ပ	чW	Si	ч	Ni	Co	WO	3	AI		2L	۵ 	
B1900	5406335	0.10	0.10 0.10 <0.10	< 0.10	8.11	Bal.	10.15	6.11	< 0.10	60.09	0.98	0.08	0.013	4.28Ta, 0.16Fe, 4.28V
IN-100 (also PWA 1401)	KJ2206	0.17	0.17 <0.02	0.11	10.30	Bal.	15.10	2.96	:	5.45	4.76	0.084	0.016	0.21Fe, 0.97V
07-X	12C6412	0.48	0.48 <0.05	0.33	25.59	10.52	Bal.	0.04	7.87	ł	ł	0.03	0.005	0.46Fe, 0.02N
WI-52	59-682	0.46	0.46 0.21	0.28	20.86	0.23	Bal.	<0.05	11.06	;	:	:	4 1	1.75Fe, 1.87Cb
MAR-M 200 (also PWA 664)	KD2012	0.15	0.15 <0.02	0.080	9.20	Bal.	10.25	:	12.55	5.05	2.13	0.048	0.017	0.36Fe, 0.96Cb,<0.0lv
MAR-M 302	T272	0.88	0.88 <0.10	0.22	21.9	0.49	Bal.	<0.1	9.89	8 1	ł	0.24 <	<0.01	8.80Ta, 1.11Fe
IN-162	96317	0.10	0.01	0.04	10.03	Bal.	0.03	4.05	2.03	6.35	0.93	0.11	0.018	1.97Ta, 0.17Fe, 0.88Cb
IN-713C	65611	0.11	0.11 <0.10 <0.10	<0.10	13.40	Bal.	*	4.50	;	5.95	0.83	0.08	0.009	2.24Cb+Ta, 0.27Fe
M22	67-635	0.06	ł	1	6.35	Bal.	!	1.96	11.37	6.24	ł	0.65	;	2.87Ta
TAZ - 8A	67-640	0.01	1	;	6.20	Bal.	ł	3.86	3.86	5.96	ł	0.88	ł	8.01 Ta, 2. 44Cb
Udimet 700 (cast)	85V2416	0.08	0.08 <0.10 <0.10	<0.10	14.24	Bal.	14.87	4.18	:	4.25	3.26 <	<0.01	0.012	0.30Fe
Udimet 700 (wrought)	6541	0.113	0.113 0.01	0.02	14.85	Bal.	17.50	5.10	:	4.55	3.45 <0.02	<0.02	0.013	0.85Fe
TD-NiCr	1862 2858	0.038 0.020	11	: :	21.39 19.72	Bal. Bal.	::	::	::	::	: :	::	::	2.5Th02,.0005N, .006S 1.9Th02,.004N, .007S

CONPOSITIONS OF ALL ALLOYS USED IN THE EXPERIMENTAL PROGRAM

TABLE 2

20

Used in		PWA				,
Experimental Set	<u>Not Coa</u> Specimen		<u>Coat</u> Specimer		PWA 66 Specimen	Fig.
A	2	3Ъ	13	3a	10	2Ъ
В	11	3d	4	3a	2	2Ъ
С	3	3Ъ	9	3d	13	2ъ
D	10	3d	14	3ь	7	2a
E	16	3c	6	3c	21	2c
F	12	3d	8	3a	14	2Ъ
Unused	5 7 15	3b 3c 3c	1	3а	1 3 4 12 20 22	2a 2a 2c 2c 2c

LOCATION OF "AS-CAST" MACROGRAPHS OF THE DIRECTIONALLY SOLIDIFIED ALLOYS

	1400
	AT
TABLE 4	PROPERTIES
	SILE

•

)° F 5 TENSILE

	Propc	Proportional Limit	Limit	Ultimate	Ultimate Tensile Strength	Strength	
Alloy (none coated)	psi	N/cm ²	% of Nominal 0.2% YS	psi	N/cm ²	% of Nominal UTS	Reduction of Area, %
B1900 ~	136,000	93,800	116	158,000	109,000	114	ø
IN-100	115,000	79,300	92	140,000	96,500	06	13
PWA 1401	122,000	84,100	8	150,000	103,400	107	16
X-40	56,000	38,600	8	86,000	59,300	123	20
WI-52	84,000	57,900	168	111,000	76,500	126	7
MAR-M 200 PWA 664 ^(a)	124,000	85,500	102	145,000	100,000	107	Ω
MAR-M 302	101,000	69,600	180	117,000	80,700	115	ę
IN-162	130,000	89,600	106	163,000	112,400	112	11
IN-713C	118,000	81,400	109	147,000	101,400	108	12
M2 2	139,000	95,800	124	153,000	105,500	116	8
TAZ-8A	150,000	103,400	ł	174,000	120,000	134	2
Udimet 700 (cast)	108,000	74,500	i T	148,000	102,000	114	16
Udimet 700 (wrought)	110,000	75,800	92	143,000	98,600	95	30
TD-NiCr	42,000	29,000	105	47,000	32,400	107	9
Fach result is the average of two tests.	erase of tw	vo tests.					

Each result is the average of two tests. (a)_{No} specimens available.

.

.

•

•

22

S	
TABLE	

CREEP-RUPTURE PROPERTIES AT 1800°F

psi 25,000 25,000 23,000 11,000 13,000 26,000 26,000 24,000 24,000 21,000 29,000 18,000	10 11 11 11 11	hours 99, 95 94, 70 44, 164 83, >105 58, 153 .14, 73	% of Nominal 97 82 154 183 156 94	of Area, % 11 16 62 33 15 10
25,000 25,000 23,000 11,000 13,000 26,000 26,000 24,000 24,000 29,000 18,000 (cast) 18,000			97 82 154 183 156 94	11 16 62 33 15 10
25,000 23,000 11,000 13,000 26,000 26,000 24,000 24,000 21,000 29,000 18,000 (cast) 18,000			82 154 183 156 94	16 62 33 15 10
23,000 11,000 13,000 26,000 24,000 24,000 21,000 29,000 18,000 (cast) 18,000			154 183 156 94	62 33 15 10
11,000 13,000 26,000 24,000 24,000 21,000 29,000 18,000 (cast) 18,000			183 156 94	33 15 10
13,000 26,000 24,000 24,000 21,000 29,000 18,000 (cast) 18,000			156 94	15 10
26,000 14,000 24,000 21,000 29,000 18,000 (cast) 18,000			94	10
14,000 24,000 21,000 29,000 18,000 (cast) 18,000				
14,000 24,000 21,000 29,000 18,000 (cast) 18,000				
24,000 21,000 29,000 18,000 (cast) 18,000		69, 95	82	8
21,000 29,000 18,000 (cast) 18,000	6,500 115,	5, 71	93	10
29,000 18,000 (cast) 18,000		75, 54	64	22
18,000 18,000	0,000 7.5,	5, 11	9.3	4
18,000		89, 79	84	8
	2,400 121,	1, 118	120	22
Udimet 700 (wrought) 16,000 11,000		141, 133	137	32
$TD-NiCr^{(b)}$ 11,000 7,600	7,600	0.1	0.1	3
TD-NiCr ^(c) 5,000 3,400		1268	NA	9

(a)_{No} specimens available. (b)_{Rupture} strength significantly lower than published data. (c)_{Supplementary} test.

	Soluti	Solution Treatment	tment	Interm	Intermediate Aging	Aging	Fir	Final Aging	ng
Alloy	Temp.	np.°C	Time, hr	Temp.	ъ.°С	Time, hr	Temp.	۰. د د	Time, hr
B1900	1	3	l	I I	l t	ß	1550	843	24
IN-100 & PWA 1401	2100	1149	7	ł	;	ı	1700	927	16
X-40	ł	` ¦	I	;	1	ı	1400	760	50
MAR-M 200 & PWA 664	1	!	I	1	ł	I	1500	816	50
MAR-M 302	2250	1232	8	;	1 1	I	1500	816	24
Udimet 700 (c a st)	;	;	ı	;	1 1	ł	1400	760	16
Udimet 700 (wrought)	2050	1121	4	1550	843	24	1400	760	16

SPECIMENS	
FOR	
TREA TMENTS	
HEAT	

All other materials were used in the as-cast condition.

•

.

•

-

-

CALIBRATION DATA FOR INSTRUMENTED IN-100 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

1	635 635 11900 11320 1320 1320 10920 1920 1925 1925 1925 1925 1925 1925 1925
e 4	660 660 1380 1500 1590 1590 1590 11740 11860 11905 11920 11920 11945
cyc1 3	670 121060 1245 12450 12450 12450 12450 12450 12450 12450 12450 12450 12450 12450 12450 12455 125555 125555 125555 125555 1255555 125555 125555 125555 125555 1255555 125555 1255555
4 min 2	675 860 11000 1560 1560 11710 11850 11920 11920 11920 11920 11920
	1925 1925 1925 1925 1925 1925 1925 1925
ition 5	650 11255 11255 11280 11280 11280 11280 11925 11925 11925 11925 11925
Pos 4	705 1000 1150 1150 11555 11635 11705 11865 11865 11865 11880
ach Couple min cycle 2 3	690 880 1070 11225 11480 11710 11710 11800 11855 11855 11855
Each 3 min 2	700 935 1140 11400 11505 11600 11790 11880 11880 11880
, at 1	$\begin{array}{c} 640\\ 111020\\ 11140\\ 11280\\ 11280\\ 11920\\ 11915\\ 11915\\ 11915\\ 11915\\ 11915\\ 11915\\ 11915\\ 11915\\ 11916\\ 119$
e, °F 5	750 1310 1370 1420 1490 11730 11850 1850 1850 1850
Temperature n cycle 3 4	800 1110 1260 1495 1585 11710 1710 1715
	810 1050 11230 11570 11570 11740 11740
2 mi 2	805 1090 11240 11490 11580 11705 11705
	760 1340 1340 1405 1405 1405 1405 1810 1810 1855 1890
ime, n-sec	0202020202020202020 491049102020202020 02020202020202020
Tir	444444444444444444444444444444444444444

CALIBRATION DATA FOR INSTRUMENTED WI-52 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

•		: - -	C	- EI-	ture,	۰ ۲	at Ea		Couple	Posit	ion	4 min	c vc.	e	I	
10		2	n N	4 7	ĥ			4 1	トレ	ĥ		2	m	4	r	1
οωφανουουουούούούο	805 11500 11500 11500 11280 11745 11745 11840 11875 11875	825 825 1080 1590 1590 1590 1850 1850	840 1050 1250 1560 1560 11740 11845 1845	815 1100 11490 1690 11690 11765 11860	780 1145 1240 1525 1715 1880 1880	705 1030 11130 11130 11170 1520 1520 11710 11820 11880 11880 11920 11935	720 935 1095 1530 1530 1760 1885 1885 1885	750 900 1060 11240 1520 1520 1740 1855 1875	745 980 1180 11500 11790 11790 11790 11790 11825 11825 11875 11875	685 685 11700 1270 1255 11255 11255 11255 11255 11280 11860 11885 11910 11925 11925	650 980 1020 1020 1140 1140 11580 11580 11580 11890 11895 11920 11920 11920 11920 11920 11950	660 11110 1300 1570 1570 1570 11865 11865 11920 11920 11920 11920 11945	670 870 1210 1210 1500 1500 1620 11770 11845 11845 11930 11930 11935 11930 11935	660 980 1150 1325 1475 1595 1595 11865 11875 11920 11920 11920 11920 11920 11920 11920 11925	640 1120 1120 1150 1190 1190 11915 1915 1915 1925 1925 1925 1950 1955	

-

•

CALIBRATION DATA FOR INSTRUMENTED MAR-M 200 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

ł	5	630 11100 11100 11160 11200 11550 11530 11530 11850 11850 11910 11920 11940 11940
٩	4	670 670 11130 11285 1400 1500 1690 1835 1870 1835 1930 1930 1935 1935 1935
ι Λυ Γ	372	685 840 11160 11160 11340 11725 11725 11725 11725 11725 11725 11915 11915 11915
4 min	2	665 665 11195 11195 11360 11795 11890 11925 11925 11925 11925
uo		650 970 970 1050 11050 11220 11220 11220 11220 11220 11220 11220 11225 112555 11255 11255 11255 11255 112555 112555 112555 112555 11
ositi	۲ ا	670 11150 11150 11150 11240 11510 11830 11830 11830 11830 11830 11830 11830 11830 11830 11830 11830
ple P	4	730 950 11290 11290 11790 11790 11865 11865 11885
h Coup]	m	745 890 1100 11245 11720 11720 11720 11865 11865 11865
t Each	2	725 940 1100 11265 11390 11725 11725 11815 11815 11815
°F, a		675 11170 11170 112500 11250 112500 110000000000
ture,	5	760 1280 1340 1570 1570 1570 1710 1710 1755 11750 1860 1860
Temperat	4	840 11100 1230 1470 11565 11690 1740
۲ د	2m	850 1170 1170 1170 1415 1510 1660 1710 1710
n î m	\sim	840 1200 1200 1335 1435 1680 1680 1725
		780 1070 1220 1280 1510 1510 1510 1510 1510 1510 1520 1790 1790
e E	-sec	02202020202020202020 02020202020202020 02020202
ŀ		444444444444444444444444444444444444444

CALIBRATION DATA FOR INSTRUMENTED MAR-M 302 SPECIMENS

WHEN CYCLED INTO THE HIGH TEMPERATURE BED

¢	J

ł	5	645 960 1150 1150 1150 1260 1530 1635 1700 1840 1915 1915 1935 1955 1955
	e 4	650 955 1415 1415 1415 1560 1560 1870 1870 1920 1920 1920 1920 1920 1920 1920 192
	3 CACT	660 925 1175 1375 11375 11375 11375 11330 11830 11930 11930 11930 11930 11930 11930 11930
		655 825 1115 1340 1495 1605 1815 1815 1815 1815 1925 1925 1935 1935
ion		645 950 950 1030 11060 11060 11660 1535 1690 11880 1910 1910 1920 1920 1920 1950
ositi	ľ	$\begin{array}{c} & 700 \\ 11110 \\ 11170 \\ 11270 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11715 \\ 11920 \\ 11935 \\$
ple P	Le 4	730 11000 11170 11320 11430 11770 11770 11820 11885 11910
h Co	3 CAC	745 900 11070 11200 11470 11470 11650 11870 11870 11870
Ц Н	3 min 2	715 920 11000 11250 11500 11750 11680 11890 11890
°F, a		690 1060 11100 11145 11145 11540 11725 11805 11805 11930 11930
ture,	ĥ	800 1220 1220 11270 11270 11270 11270 11270 11275 11735 11735 11735 11865 11865
Temperat	e 4	865 11115 11115 11470 11670 11670 11840 11840
Ten	1 cyc]	870 1085 1290 1435 11560 11670 11795 11825
	2 min 2	875 11300 1570 1570 11570 11790 1830
	L	785 1180 1250 1250 1250 1550 1710 1710 1855 1855
	ime, n-sec	02020202020202020000000000000000000000
	min	

•

.

-

-	1
TARLF	

CALIBRATION DATA FOR INSTRUMENTED UDIMET 700 SPECIMENS WHEN CYCLED INTO THE HIGH TEMPERATURE BED

1		ł																				
	ţ	^		630 1170	ST C	37	ະຄິ	N N N N	2	\sum_{n}	20	റെറ	~ 0	5	50	67	6	6	2	29	5	
		t		650			22	1400 1400	2	6.3	21	$\sum_{i=1}^{n}$	50	ന്ദ	$\sim c$	60	5	92	6	22	67	
ľ	cyc le	m		665			22	1055 1235	39	3	ŝ	71	\sim	5	30	80	60	5	6	6	6	
	min	2		660			2	$1170 \\ 1360$	6	30	8	57	80	200	80	8	91	92	6	76	76	
цо	4			$640 \\ 1000$	ഹന	181	22	6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	50	2	5	80	87	8	$\tilde{\mathbf{o}}$	80	6	6	92	76	9	
siti	ľ	ۍ		650 1200	500	36	40	53 64	17	78	82	86	88	90	91	93	94					
_ <u>_</u>	le	4		700			000	12401420	90	56	73	78	83	86	83	90	6					
}	n cyc	ς.		720			00 1	1140	480	580	670	720	780	820	850	870	890	•				
ы Ы	3 mi	2		715			80	1380	522	62	70	75	79	83	86	88	68) 				
F, at				90	1140	261	5	400) S S	55	80	84	86	80	90	6	19	1				
e, °		2		76 29	1350	4 1 7	46	200	いて	76	79	83	86									
eratur		4		830			13	1310	200	65	73	78	81									
Temper	cycle	£		845			08	1270	1 1 1 1	64.	17	76	80									
	min	2		840			10	1285	20 t	64	72.	1	80.)								
	2			7020	1200	0 t 0 t	32	51	- 6 9 9	55	50	82	0 0 0 0 0 0)								
	ime.	l-sec		0 "	יסי	יע	151	0 0 0	ĴC	א ג ר	100	ۍ د لک	<u>)</u> 0	15 1	30	י ג לי	ר כ ל	א ג ר		507	<u>)</u> 0	
	Τi	uin							-	┥┍╸			10	10	5	10	1 ୯	י ע	ר ה	י ר	5	

CALIBRATION DATA FOR INSTRUMENTED IN-100 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

۱ h	1870 1590 1590 1590 1440 11440 890 890 675 645 645 645 645 645 630
e t	1940 1940 1500 1500 11330 9860 8860 8860 8860 770 770 770 770 680 680 680 660 660
cyc1 3	1925 1925 11810 11600 11290 11290 11290 11290 11290 11290 11255 11255 11255 11255 11255 11255 12750 775 775 775 7750 7750 7750 7750 775
4 min 2	1945 1945 11790 11580 11420 11140 111140 1111140 11111111
l l	1900 11565 11565 11565 11565 11565 11565 11660 11170 11555 1170 10555 1170 10555 1170 10555 1170 10555 6355 6355 6355 6355 6355 6355 6355
Posit 5	1840 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 11570 1570
uple e 4	1855 1855 11650 11465 11465 11465 11140 1050 8835 8835 8835 8830 750 720 690
Each Couple in cycle 3 4	1880 1550 1550 11380 1235 1110 770 770 710
at Ea 3 min 2	1880 1520 1520 1520 1200 1070 1070 1070 1070 705 705
ы Бы о	1845 11600 11560 11550 11470 11285 11285 11285 11285 11285 1665 665 650
ature, 5	1770 1380 1290 1270 11290 11270 11270 730 730 730
mper 1e 4	1755 11460 11460 1180 1060 890 890 800 800
о ц	1745 11745 11580 11245 1130 1030 885 885 815
2 mi	1745 1510 1510 12100 11100 1010 8650 805
	1790 1570 1490 1490 1210 1210 1210 1210 1210 1210 1210 12
ime, n-sec	020202020202020202020 02020202020202020
Tim	44440000004

•

-

•

CALIBRATION DATA FOR INSTRUMENTED WI-52 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

pr	n i	11900 11570 11570 11470 11470 11470 11470 11470 11470 11470 11470 11470 11470 11470 11470 11470 11470 11650 1470 16655 6455 6455
e A	t	1950 1720 1540 1540 1540 1120 11120 11120 8865 765 705 680 680 680 660
1 cyc.	n	1940 1945 11845 11450 11450 11450 11450 11450 11450 11665 11160 11665 11665 11665 11665 11665 11760 11700 1000 11700 11000 1100000000
4 min	1	1940 1940 1595 1595 11595 1140 1040 965 795 795 735 735 735 735 680 680 680
ion	-	1910 1685 1685 1685 1685 1570 1570 1570 1685 875 875 740 740 740 740 740 655 655 655 655
Each Couple Position nin cycle 3 4 5 7		1880 1570 1570 1570 1570 1570 11435 11430 11430 11430 11435 11455 115555 115555 115555 115555 115555 115555 115555 1155555 11555555
uple e 4	F	1875 1875 1670 1490 1200 11200 11200 11000 870 870 870 870 775 775 775
ch Co 1 cycl	,	1870 1590 1590 1590 1190 1190 1190 11080 11080 11080 11080 730 730
at Ecc 3 min	1	1875 1540 1540 1540 1150 1050 975 975 975 975 790 725
ы Ч	-	11895 11655 11655 11655 11656 11110 115590 111230 11620 11230 11620 11620 11720 1020 1020 1020 1020 1020 1020 1
ature, 5	,	1810 1535 1440 1440 1440 1235 985 985 790 765
mper 1e 4	-	1820 1570 11520 11270 11170 1070 880 880 880 810
<u>ျပက</u>	,	1830 1640 11590 11220 1105 835 835
2 min 2		1800 11570 11570 11200 11090 9905 8205
	•	1800 15500 15500 15500 11550 11550 11550 11550 11550 11550 11550 1555 1550 1500 1
ime. n-sec		0202020202020202020 491 491 491 4911 02020202020202020
L L L L L L L		44440000004

CALIBRATION DATA FOR INSTRUMENTED MAR-M 200 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

	1	00000000000000000000000000000000000000
	r s	00000000000000000000000000000000000000
	Le 4	1920 11210 11210 11210 11210 11210 11210 11210 10220
	3 CAC	1925 1925 11790 11790 11790 11790 11790 11790 11790 11790 11790 11790 11790 12700 7955 700 700 700 700
	4 min 2	1905 1905 11430 11430 11430 11290 11290 11290 11290 11290 11290 11290 11290 11290 1250 7860 7860 7860 7250 705 705 705 705 705 705 705 705 705 7
ion		11660 11660 11615 11520 11520 11520 11520 11520 11520 11520 11520 11520 11520 11520 1260 1260 1260 1260 1260 1260 1260 12
Posit	<u>ا</u> م	1835 1510 1510 1510 1515 1335 11355 113555 113555 113555 113555 113555 113555 113555 1135555 1135555 1135555 113555555 11355555555
Couple	е 4	1880 1500 1500 11500 11205 1005 11095 780 730 730
Each Co	1 cycl 3	1875 1875 1560 11400 11400 1140 970 970 910 8555 810 775 750
t	3 min 2	1875 1875 11505 11505 11505 11210 11210 11210 11210 11210 755 730
• ۲ • ۲		1840 1550 1550 1550 1170 900 805 805 740 670 670
ature,	5	1750 1390 1320 1250 11250 11250 11250 11255 750 730 730
Tempera	1e 4	1750 1530 11370 11350 970 970 970 970 970
Ţ	n cyc 3	1720 1720 1615 1455 1455 1615 990 990 990 9255 855
	2 min	1725 1725 1600 11440 11300 11440 1165 985 985 920 850
		1780 1420 1310 1280 1280 1280 1280 1280 1280 1280 750 750
	ime. n-sec	040106401064010640040 040106401064010640

-

CALIBRATION DATA FOR INSTRUMENTED MAR-M 302 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

ł	5	1900 1830 1575 1575 1575 1525 1110 920 850 850 850 675 645 645
٩	4	1945 1945 1470 1470 1170 910 895 790 725 725 725 725 725 725 725 725 725 725
CVC	3	1935 1935 1590 1590 1159 1050 975 975 975 975 730 730 730 730 685 685 665
4 min	2	1940 1940 1550 1550 1550 1550 1550 1120 1120 112
ion		1880 1580 1580 1580 1540 1540 1470 1500 11220 11220 11220 11220 1560 655 655 645
Posit	<u>ل</u>	1845 1560 1560 1490 1425 11450 11425 790 790 790 730 730 730 730 730
Couple	4	1880 1670 1470 1315 1195 1040 1010 875 8330 780 715
ch	n N	1870 1540 1540 11390 11390 11390 11390 11390 11390 11390 11390 1250 1250 1250 1250 1250 1250 1250 125
at Ea 3 min	5	1890 1530 1530 1530 1530 1530 1530 1530 153
°F,		1905 1690 11550 11550 11550 11550 11550 11550 1150
ature,	5	1780 1530 1450 1450 11450 11240 1120 1120 1120 750 750
mper	4	1840 1420 1175 1175 995 930 930 930
min cvc	n .	1830 1470 11900 1090 1005 875
2 mi	1	1830 1480 11480 1180 1080 1080 1080 875
		1810 1520 1520 1520 15250 15260 15250 15260 152760 15270 15770 157
ime	-sec	02020202020202020200000000000000000000
Ľ.		44440000004

CALIBRATION DATA FOR INSTRUMENTED UDIMET 700 SPECIMENS WHEN CYCLED INTO THE INTERMEDIATE TEMPERATURE BED

			H	Temper:	erature,	, Е.	ц	ach Cc	uple	Posit	tion				
		2 2 11	min cy 3	cle 4	5		3 mir 2	in cycle 3 4	4 6			4 min 2	1 cycl	e 4	~
ł	1795 1580	1805	1805	1815	1780 1400	1855 1650	1895	1900	1880	1820 1450	1900 1680	1940	1950	1935	1860 1470
	50 450				34 30	らす				42 38	ഗഗ				42 45
	39				28	4				34	4				37
	ŝ	, 63	169	160	25	40	62	~ -	<u>ہ</u> و	8,	1 (75	87	22	34
	101	1320	1370	1290	14 05	ィー	1270 1270	14/0 1300	1410 1260	٩4 10	7 1	1410	1475	1370	20
	01	17	120	115	96	0	12			93	\circ	25	32	22	95
	2	06	110	105	ø	920	04	0	0	~	<u>O</u>	12	18	10	\sim
	S	∞	100	96		850	95	9	σ	\sim	880	03	0	8	\sim
	0	2	95	89	9	800	890		880	∞	800	95	98	93	\mathbf{n}
	9	4	85	82	4	765	850		840	ŝ	770	δ	0		<u></u>
						730	800		790	\sim	740	2	SO.		\sim
						700	770		760	∞	720	σ	\mathbf{O}		\Box
						680	750		735	S.	700	S	\sim	ന	\mathbf{c}
						655	725		710	<u></u>	680	ŝ	<u><</u> t		S.
											660	-	\sim	S.	ഹ
											650	δ	\mathbf{O}		ST
											645	∞	∞	S D	ന
											640	9		ഹ	ຕ.

INSPECTION POINTS AND TOTAL THERMAL CYCLES FOR EACH ALLOY

			in.						in.			
	1 ! !	Avg	0.73	.056 .030	6 O				3.20		.210.361	
	d Crack	Back		.040 .065	-i						.216	
(1)	Third	Front		.073 .095	.176						.358	
and 600°F)	1 101	Avg	1.95 in.	.138.204	.371	1.10 in. .163 .244	2.50 in.	.1465	1.10 in.	.2145	.269 .326	2.30 in. .166 .174
1990°F	Crack Length, i Second Crack	Back		.1 32 . 198	.368	.186		.155		.204	.275	.172
Beds at	Crack Sec	Front		.194.210	.373	.140 .223		.138		7	.330	.160
Fluidized B	ack	Avg	2.5 in. .1125	.143 .2055 .219	.367	3.00 in. .230 .268	1.50 in.	.219	_ ∩ –	. 342	. 352 . 439	3.00 in. .205 .228
tween F	irst Crack	Back	ttom: .108	.165 .207 .218	.363	ottom: .220 .240	ottom:	.227	ottom: 101	.242	.409	ottom: .220 .214
Be	Fi	Front		.121 .204 .220		from bo 2^{4}_{40} 296	р Ш	.211		.214	.335	from bo .189 .241
(Specimens Cycled		Cycles	Distance 1000	1400 2000 3000	4000 5000	Distance 4000 5000	Distance	0001	Distance	700 1000	1400 2000	Distance 1400 2000
(Spe	Edge Radius,	in.	0.025			0.040	0.025		0.025	1		0.040
	Specimen	Set	A (2 min	dwe11)			B S S S S S S S S S S S S S S S S S S S	(2 min dwell)	C (2 1/2 min	dwell)		

•

TABLE 18

۰.

SUMMARY OF CRACK PROPAGATION FOR B1900

TABLE 18 (Continued)

								11			
Specimen	Luge Radius,		First C	rst Crack	ck	Seco	Crack Lengen, Second Crack	l, ln. ack	Third	d Crack	
Set	in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg
D A min	0.025	nce	from bot	L L	1.60 in.			2.80 in.			2.10 in.
dwell)		000000000000000000000000000000000000000	.270	. 3304 3334	.287	.280	.260	.270.314	.163	.221	.192
			.378 .444	• •	.383 .434	.372	.399	.364	.295	.352	.301
	0.040	Distance	from	ttom:	1.20 in.			2.75 in.			
		1400 2000	.136	. 175	.170	.104 .139	.108 .165	.106			
E (3 1/2 min	0.025 1	Distance 700	from .134	bottom: 2 .032	2.50 in. .083	.074	ł	2.00 in. .037			
(TT AND	0.040	Distance 700	from .075	bottom: 1 	1.40 in. .0375						
F (4 min	0.025	Distance from 265	from boi .265	bottom: 2 .277	2.30 in. .271	.248	.224	.235			
(TTEMD	0,040	Distance from 500 .230	from bot .230	bottom: 1 .218	1.40 in. .224						

TABLE 19	SUMMARY OF CRACK PROPAGATION FOR B1900 - COATED	(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F)
----------	---	---

2.00 in. .242 .282 .00 in. 2.00 in. 2.20 in. .298 .235 .259 .274 .187 Avg Third Crack .310 .253 .273 .256 .170 Back Front .228 .231 .265 .275 .286 .203 1.00 in. .264 .285 2.80 in. .053 .125 .75 in. 0.90 in. 2.80 in. .233 .164.183 .283 .444 .450 .490 in. Avg <u>Second Crack</u> Front Back Av Crack Length, .286 .390 .443 .452 .486 .158 .268 .039 .213 .116 .280 .334 .445 .447 .447 .260 .170 .252 1.60 in. .181 .345 .345 .418 .418 2.80 in. .283 .300 2.20 in. .076 1.08 in. .158 3.10 in. 1.90 in. .060 .194 495 .166 .281 Avg First Crack from bottom: .072 .048 .192 .158 .169 .255 .318 .185 from bottom: .286 .280 340 345 414 441 493 .305 .164 from bottom: .078 .074 177 Back from bottom: from bottom: from bottom: Front .203 . 185 . 350 . 422 . 439 152163 352 352 .295 Distance 1400 2000 2800 3500 4400 4400 Distance 1400 2000 Distance 4000 5000 Distance 5000 Distance 4000 Distance Cycles 3000 4000 5000 5000 2000 Edge Radius, 0.040 0.025 0.040 0.025 0.025 0.025 in. C (2 1/2 min dwell) Specimen Set (3 min dwell) (2 min dwell) (2 min dwell) ρ В 4

Avs	1.70 in. .165	
<u>Third Crack</u> Front Back A	. 155	
Front	.175	
h, in. ack Avg	2.20 in. .305	
Lengt ond Cr Back	. 315	
Crack Sec Front	.295	
ack Avg	1.25 in. .175 .340 .355 .360 .418	2.00 in. .196 .378
First Crack nt Back Avg	ottom: .176 .355 .374 .375 .423	oottom: .224 .388
Front	from t .174 .325 .336 .345 .413	from 1 .168 .368
Cycles	Distance 2000 2800 3500 4000 4400	Distance 1000 1500
Edge Radius, in.	0.040	0.025
Specimen Set		F (4 min dwell)

TABLE 19 (Continued)

Specimens Cycled Between Fluidized Beds at 1990°F and 600°F) SUMMARY OF CRACK PROPAGATION FOR IN 100

	Edge				Crack	Crack Length	h, in.			
Specimen Set	Radĭus, in.	Cycles	First Ci Front Back	Crack k Avg	Sec Front	Second Crac nt Back /	PK	Third Front B	rd Crack Back	ck Avg
A (2 min dwell)	0.025	Distance 1000	from bottom: .318 .298	2.60 in. .308	.295	. 305	1.30 in. .300	.280	.288	0.97 in. .284
B (2 min dwell)	0.025	Distance 625 800 1000	from bottom: .245 .238 .279 .309 .321 .329	1.50 in. .242 .294 .325	.235 .336 .341	.229 .336 .347	1.00 in. 232 .336 .344	.154 .290 .298	.159 .298 .310	2.40 in. .157 .294 .304
	0.040	Distance 800 1000	from bottom: .167 .230 .187 .223	2.40 in. .199 .205	.173	.146	1.80 in. .160 .207			
(? 1/2 min dweil)	0.025 n	Distance 100 200 300 500 700	from bottom: .268 .198 .288 .294 .344 .315 .334 .330 .345 .340	2.75 in. 233 291 330 337 343	.180 .270 .320 .336	.236 .236 .304 .338	1.35 in. .208 .279 .297 .320 .337	.241 .256 .285 .305	.130 .277 .299 .328	2.00 in. .186 .267 .292 .302 .330
	0.040	1000 Distance 500 700 1000	.355 .36 from bottom .210 .21 .234 .23 .282 .32	0 MHO 0	0 H 0	400 4	2000	Ω ∞	ч 0	90 0

•

.

-

TABLE 20 (Continued)

Specimen Set	Edge Radius, in.	Cycles	First Front Ba	t Cra ack	ick Avg	Crack Seco Front	Length, ond Crac Back	n, in. ack Avg	Thi Front	rd Cra Back	ck Avg
D (3 min dwell)	0.025	Distance 50 100 200 300 500 700	from botto 290 .2 330 .3 340 .3 352 .3 .352 .3 .363 .3	от: 268 346 372 372 372 372	3.00 in. .279 .337 .343 .362 .362 .368	.285 .337 .337 .337 .337	. 342 . 342 . 342 . 342	2.10 in. .267 .305 .339 .339 .340 .344	.241 .280 .280 .317 .317	.231 .346 .346 .348 .348	1.25 in. .236 .310 .313 .333 .333 .333
	0.040	Distance 200 300 500 700	from botto 220 220 2 245 281 281	от: 238 255 275	2.50 in. .229 .229 .250 .278	.186 .186 .215	.168 .168 .225 .237	1.40 in. .177 .177 .220 .234			
E (3 1/2 min dwell)	0.025 n	Distance 300 500 700	from botto .049 .0 .225 .2 .323 .2	0대: 089 217 295	1.90 in. .069 .221 .309	. 306	.265	2.60 in. .286			
	0.040	Distance 100 200 300 500 700	from bott .275 .283 .290 .290 .315	ош: 275 285 315 325	3.00 in. .275 .284 .291 .303 .320	.236 .265 .276 .276	.226 .263 .274 .274	1.10 in. 231 264 273 273 275	.175 .204 .239 .242	.185 .209 .262 .274	1.80 in. .180 .207 .241 .252 .258
F (4 min dwell)	0.025	Distance 50 100 200 300 500	from botto .286 .325 .328 .336	от: 276 3307 338 338	1.60 in. .281 .298 .315 .319 .337	.277 .290 .295 .319	.273 .294 .299 .341	2.00 in. .275 .292 .297 .298 .330	.337 .368	.327 .327 .379	3.10 in. .332 .332 .374
	0.040	Distance 500	from botto .260	om: 240	2.60 in. .250	.215	, 203	1.40 in. .209			

TABLE 21 SUMMARY OF CRACK PROPAGATION FOR IN 100 - COATED

(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F)

Specimen	Edge Radius,	-	First Crae	1 1 7 3 1	Crack Secon	ck Length cond Crack			rd Cra	님님
Set	In.	Cycles	Front Back	Avg	- 1	Back	Avg	Front	Back	Avg
A (2 min dwell)	n. 025	Distance 2003 3000 4000 5000	from bottom: .206 .238 .212 .245 .295 .291 .312 .295	1.28 in. .222 .229 .293 .303	.246 .252 .275	.196 .221 .285	2.34 in. .221 .237 .280 .291	.176 .182 .288	.192 .198 .286	0.80 in. 184 190 287 294
	0,040	Distance 4000 5000	from bottom: .210 .216 .225 .220	2.80 in. .213 .223	.185	.175	1.10 in. .180 .190			
C (2 1/2 min dwell)	0.025 n	Distance 1400 2000	from bottom: .279 .281 .338 .346	2.20 in .280 .342						
	0,040	Distance 1403 2030	from bottom: .225 .279 .348 .336	1.25 in. .252 .342	.324	. 330	2.90 in. .327			
D (3 min dwell)	0.025	Distance 700 980 1400 2000	from bottom: .247 .251 .293 .283 .317 .307	2.45 in. .249 .312 .338	.307 .356	.265 .367	0.90 in. .286 .362	.230 .370	. 249 . 363	1.40 in. .240 .367
	0.040	Distance 500 700 980 1400 2000	from bottom 244 .27 260 .30 .345 .33 .375 .35	8733850 333820 8333820	412886	4 H O & U	9108201 99550	•		1

•

.

•

Ч
ā
nue
ຼ
- 6
•
نډ ،
7
цо
Ö
C
\sim
\sim
<u> </u>
)
21 (
2
2
LE 2
BLE 2
BLE 2
LE 2

	Edøe					Crack Lenoth in			
Specimen Set	Radius, in.	Cycles	Front	First Crack nt Back A	ıck Avg		Fro	Third Crack nt Back Avg	60
E (3 1/2 min dwell)	0.025	Distance 300 500 700 1000 1400	from t 195 .291 .352 .348 .408	ottom: 199 293 308 420	3.00 in. 197 292 330 347 414				
F (4 min dwell)	0.025	Distance 1500 Distance 500 1000 1500	from 137.37. 1233.7. 1233.7. 1233.7. 1233.7. 1233.7. 1233.7. 1233.7. 1237.7. 1	bottom: 5 .365 bottom: 3 .219 0 .316 0 .420	2.80 in. .370 0.90 in. .226 .338 .338				

ed Between Fluidized Beds at 1990°F and 600°F)	Crack Length, in.	First CrackSecond CrackFront BackAvgFront BackAvg	from bottom:0.80 in.1.18 in065.025.045.055.066.024.066.035.066.054.066.030.075.080.078.030.030.075.080.078.035.045
een Fluidized		st Crack Back Avg	• •
		Firs Front B	from bc . 065 . 065 . 066 . 075 . 075
(Specimens Cycled Be		Cycles	Distance 2800 3500 4000 4400 5000
(Sp	Edge	Radius, in.	0.025
		Specimen Set	D (3 min dwell)

TABLE 22 ARY OF CRACK PROPAGATION FO

SUMMARY OF CRACK PROPAGATION FOR PWA 1401 3 Cvcled Between Fluidized Reds at 1990'F and

4	4

SUMMARY OF CRACK PROPAGATION FOR PWA 1401 - COATED

(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F)

y crack	Back Avg		.020 .025 .020 .025 .031 .040 .092 .100	3.26 in. .047 .032 .049 .035 .114 .094 .112 .112			
τhi			. 030 .046 .049	.017 .021 .074 .110			
1, in.	Avg	1.7 in.	.031 .040 .050 .052	1.52 in. .032 .034 .099 .114			
Crack Length, Second Crac	Back A		.027 .035 .050 .059	.064 .068 .127 .130			
Crack	Front Bac		. 035 045 0550 055	 090 .098			
ack	Avg	с С	. 050 . 070 . 076 . 091	0.87 in. .065 .071 .125 .130	0.80 in. .043 .070	2.00 in. .030 .131 .131	1.40 in. .051 .056 .058
irst Cr		ottom:	.046 080 032 089	ottom: .073 .083 .140 .140	ottom: .021 .062	ottom: .030 .132 .132	ottom: .052 .056 .058
H		0	050 050 050 093 093	from b .052 .058 .110 .119	from b .052 .077	from b .030 .130 .130	from b .050 .055 .057
	Cycles	Distance	2000 2000 2000 2000 2000 2000 2000	Distance 2000 3000 4000 5000	Distance 1400 2000	Distance 2803 3500 4003	Distance 2800 3500 4000
Edge Radius	in.	0.025		0.025	0.025 n	0.025	0.040
Snacimen	Set	A A	dwell)	B (2 min dwell)	C (2 1/2 min dwell)	D (3 min dwell)	

	and 600°F)
SUMMARY OF CRACK PROPAGATION FOR X40	(Specimens Cycled Between Fluidized Beds at 1990°F

Specimen Set	Edge Radius, in.	Cycles	Front	First Cr. t Back	Crack k Avg	Crac Sec Front	Crack Length Second Cracl ont Back 4	th, in. ack Avg	Third Front B	rd Crack Back	k Avg
A (2 min dwell)	0.025	Distance 800 1000 2000	fror bo 121 183 .304	bottom: .112 .190 .285	2.90 in. .117 .187 .295						
	0.040	Distance 800 1000 2000	from bo .054 .079 .162	bottom: . 036 . 182	2.62 in. .027 .058 .172						
B B	0.025	Distance	from bo	ttom:	3.10 in.			1.20 in.			2.2 in.
(z min dwell)		1000 2000	.204	4 . 204 0 . 320	. 320	.110	.207 .314	.159 .304	.108	.158	.133
	0,040		from		2.90 in.			3.25 in.			
		2000	.062	.089	.076	.116	.077	.097			
C (2 1/2 min	0.025 n	Distance 700 1000	from bo .115	н. Н	0.95 in. .128 .220	• 088 108	.075 180	2.25 in. .082 180			
(TTOMD			.255	.280	. 358	.257	. 290	.274	.202.301	.235	.219 .294
	0,040	Distance	from l	ottom:	2.40 in.			2.10 in.			
		2000	.110	.037	.074	.105	.115	.110			

	Edge					Crac	Crack Length,	th, in.			
Specimen Set	Radius, in.	Cycles	First Front Bac		Crack k Avg	Sec Front	Second Crack nt Back A		Third Front B	rd Crack Back	ck Avg
D	0.025	Distance	from bot	oottom:	00			1.20 in.			1.70 in.
dwell)		980 1400 2000	.198 .198 .271 .342	. 208 . 298 . 322	.203 .284 .332	.105 .243 .328	.120 .247 .340	.113 .245 .334	.154	.162	.158
	0.040	Distance 700 080	ot	.052 .052	2.80 in. .050			.080 in			
		1400 2000	.222	.196	. 209 . 244	.145	.175	.160			
E (3 1/2 min	0.025	Distance	from bot	ottom: 117	2.25 in.			2.85 in.			1.65 in.
dwe11)	1	1000 1400	.142	.156	.146 .245	.122 .248	.264 .268	.193	.188	.278	.233
	0.040	Distance 1400	from bot .094	bottom: .096	1.40 in. .095						
F // min	0.025	Distance	from bot	tom:	2.90 in.			2.25 in.			1.00 in.
dwell)		700 1000 1500	.176 .285 .362	.196	. 186 . 309 . 375	.165 .274 .341	.151 .286 .351	.158 .280 .346	.057 .186 .315	.067 .200 .301	.062 .193 .308
	0.040	Distance	from	tom: 066	20			1.25 in.			
		1000	.110	.133	.110	.104 .122	.044	.074 .119			

TABLE 24 (Continued)

(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F) SUMMARY OF CRACK PROPAGATION FOR WI-52

	Edge					Crac	Crack Length,	th, in.				
Specimen Set	Radĭus, in.	Cycles	Fir: Front	st Cra Back	ck Avg	Second Front Bac	ond Crack Back Avg		Thi Front	Third Crac ont Back	ck Avg	
A (2 min	0.025	Distance 1000	from .140	00	95 33	6	1	60	. 05	I	12 00	÷
1)		1400 2000	• •	19 25	19 24	- О	13 27	1724	147	69	11	
		3000 4000 5000	.265 .312 .321	.271 .310 .313	.268 .311 .317	. 225 . 337 . 337	.280 .331 .343	.252 .334 .340	.153 .269 .298	.168 .267 .280	.160 .268 .289	
	0,040	Distance		t C	0 5 7	i.	7	20 49	in.			÷
		1400 2000	.144	.166	15 20	. 156	.125	.110	$12 \\ 13$		6 H	
		3000 4000	。212 257	.215 .248	21 25	99	Ч Ц Ц	$15 \\ 15$, 152 , 222		.168	
		5000	.252	2	ΓΩ.	16	16	9	22	1		
r Bi B	0.025	Distance	from	50 C	.10	<u>v</u>	9	6.9	n.		1.55 in	÷
dwell)		800 1000	.124	.116 .128	.120	.133	.123 .166	.128	.105 .141	.109 .139	.107 .140	
	0.040	Distance 800 1000	from .051 .072	bottom: .053 .076	500	in.						
	0,025	Distance	from	o tr	, 25	in,		1.50 i	in,		1.70 in.	ĵ
./ 2 min 1)	c	500 700 1000	,145 ,178 ,242	.222	.153 .200 .246	.091 .133 .172	.105 .131 .170	.098 .132 .171	. 152	。142	.147	

.

.

								11			
Specimen Set	Edge Radius, in	Cvcles	First Front R	t Crack Back	Avo	Crac Sec	<u>Crack Length, Second Crack</u> ont Rack Av	th, in. Avo	Thi	Third Cracl	1.61
		1			0				1 + 0114		AV6
C (2 1/2 min	0.040 .n	Distance 500	from .097	bottom: .070	1.25 in .084			2.10 in	•		
dwell)		700 1000	.122	077 105	.100	.108	.108	.108			
D (3 min	0.025	Distance 100	from bot. .053	tom: 069	3.00 in .061	·.		1.90 in	•		2.30 in.
(TTEMD		200 200 200	178 178 245 267	.136 .176 .243	.137 .177 .244 .261	.115 .155 .171	.115 .160 .185	.115 .158 .178	.087 .140 .162	.071 .144 .168	.079 .142 .165
	0.040	Distance 500 700	from .110 .134	bottom: .108 .122	1.40 in .109 .128	1. .067 .115	.073	2.80 in .070 .119	•		
E 170 min	0.025	Distance		tom:	7.0	.		1.70 in.	۰		2.40 in.
	1	200 200	. 140	.130	.135	.130	.045	.050	.145	.141	.143
	0.040	Distance 300 500 700	from .039 .128 .130	bottom: .047 .116 .142	1.10 in .043 .122 .136	·					
F (/ min	0.025	Distance	from bot	tom: 036	1.60 in 0/8	J.		2.35 in	o		1.90 in.
dwell)		300 500	.085 .134	088 088 142	.087 .138	,135 ,195	.131 .185	.133 .190	。092 。155	.042	.067 .155
	0°070	Distance 500	from °073	bottom: .093	1.00 in .083	، 065 و	.053	2.30 in .059	٥		

TABLE 25 (Continued)

en Fluidized Beds at 1990°F and 600°F)	Crack Length, in. t Crack 7hird Crack Third Crack	ack Avg Front F	tom: 3.00 in. 041 044 043 in. 1.68 in. 1.10 in. 310 300 041 044 045 045 310 310 044 045 045 045 310 0143 046 045 045 310 010 0107 0109 103 072 070 072 0	tom: 2.65 in. 1.84 in. 250 .250 .236 .186 .211	tom: 1.5 200 .19 210 20	213 209 .072 .065 .069 236 .232 .076 .080 .078 .097 .092 291 .287 .163 .212 .188 .280 .274 .277 291 .287 .175 .218 .197 .288 .274 .277	tom: 1.40 in. 2.50 in. 1.90 in. 1.90 in. 222 234 233 250 242 221 209 215 222 234 257 253 255 245 245 237 241	tom: 1.5 240 .73	60 .355 .308 .29 60 .358 .334 .32 60 .358 .345 .34 60 .358 .345 .34 60 .358 .345 .34 60 .358 .345 .34
	ength Crac	ack	98593364 2259364	86	П	65 80 122 18	50 53	ŝ	2298 2455 2455 2455 2455 2455 2455 26 26 26 26 26 26 26 26 26 26 26 26 26
at	Crack Secor	ront	041 043 0638 107 295	36 .		C72 076 163	233 . 257 .	•	3308 3455 3455 3455 3455 3455 3455 3455 345
	×.	A	• 00 3310 310 310 372	.65 250	190	8830	.40 234 234	.50	
tween Fl	irst Cra	ž	1001110 1001110 1000000	bottom: .250		.213 .236 .291	bottom: .222 .222	bottom: .240	360 360 360 360 360 360 360 360 360 360
Be		Front	from .300 .310 .310 .310 .310 .310	from .249	from .180 195	205 227 283 283	from 1 .246 .246	E C	
(Specimens Cycles		Cycles	Distance 200 300 450 625 800 1000	Distance 1000	Distance 200 300	450 625 800 1000	Distance 800 1000	Distance 50	100 2000 2000 2000 2000
(Spec	Edge Radius,	1n.	0.025	0.040	0.025		0.040	0.025 n	1
	Specimen	Set	A (2 min dwell)		B (2 min dwell)			C (2 1/2 min	

-

•

-

TABLE 26

SUMMARY OF CRACK PROPAGATION FOR MAR-M 200

Ē						11'				
Edge Specimen Radius, Set in.	Cvcles	Front	irst Cr Back	ack Ave	Crack Secor Front	ck Length, cond Crack Back A	ih, in. ack Ave	Front	Lrd Crac Back	.k Avo
				0						9
0.040	Distance	44	- O F	06	in.		1.60 i	in.		2.10 in.
117	100 200	.310	~ [~						
	300	.310	32		\sim	2	2			
	500	.325	33	ε	S CO	ŝ	Ś			
	/00 1000	.360	.348	.354 .354	.280	.256	.268 .271	.242	.230	.236
0 0.55	Di ctosco	ې ب	ب + +					' {		1
	DISLANCE 25	10	22	200	. 20	C	< C	.11.		
	50			.281	ς δ	\circ	200			
	100	ິ. •		.303	0	0	30			
	200	ົ່		.304			31			
	300	ຕຸ ຕ •	ົ້	. 315 27.1	-1 c	2 0	$\sim \sim$			
	002	342	.340	.341	.330	.340	. 335			
0.040	Distance	from	bott	10			80			.4
	50	.239		.231	.190	.198	19	,105	.109	.107
	100	.283		\sim	\sim		\sim	ف	20	$\frac{18}{18}$
	200	.286		∞	・た	ñ,	4.	\sim	\sim	\sim
	300	.285		∞	4.	4.	4.	n (23	\mathbf{n}
	005	- 272 .		50	する	4.	すい	n n	23	m
	00/	.34T	.	N	Ω.	4	Ω	Z	26	
0.025	Distance	fro	- O ~	10	in.		3.20 i	in.		2.40 in.
utu	70 02	311	309	310	33	33	33			
	100	.32	·	2	33.9	33.9	ا ۳			
	200	е е е е		32	.333	.334	。 334 225			
		27.7	2 6	25	τ Γ Γ	τ) cr	τ) κ Γ			
	2002		າຕ	っち	10	うて	ッフ	, 318	.308	,313
					•					

TABLE 26 (Continued)

.

				in.	
		Avg		$\begin{array}{c} 1.35\\ 285\\ 295\\ 305\\ 306\\ 339\\ 339\end{array}$	
		rd Crack Back A		.270 .273 .300 .330	
		Front		. 300 312 343 343	
	h, in.	ck Avg	1.80 in. .264 .328	3.10 in. 332 332 339 344 344 385	・10 294 296 301
	k Lengt	Second Crack Front Back Av	.270 .328	.326 .338 .338 .394 0	.238 .276 .276 .230
unea)	Crac	Front	.257 .328	. 338 348 3468 3468 3468 3766	.240 .311 .311 .311
0 (CONCINUED)		ck Avg	2.25 in .275 .277 .283 .327 .339	→→0////0 0000000	
LABLE 2		first Crack E Back Av	bottom: .265 .267 .331 .331 .340) 11100000	275 275 355 356 356
		Fi Front	fron 285 323 323 537	from 353 .353 .374 .374 .374 .376	
		Cycles	Distance 50 100 200 300 503 703	Distance 25 50 200 200 200 500	D1556 50 200 200 200 500
	Edge	Radius, in.	0.040 n	0.025	010
		Specimen Set	E (3 1/2 min dwe11)	F (4 min dwell)	

.

.

.

TABLE 26 (Continued)

0°F)	Third Crack Front Back Avg		
(Spacimens Cycled Between Fluidized Bads at 1990°F and 600°F)	Crack Length, in. Second Crack Front Back Avg	·	
uidized	ck Avg	1.55 in. .010	3.50 in. .307 .044 .062
ed Between Fl	First Crack Front Back Av	Distance from bottom: 5000 .010 .010	from bottom: .036 .038 .040 .048 .060 .064
imens Cycl	Cycles .	Distance 5000	Distance from 700 .036 1000 .040 1500 .060
(Spec	Edge Radius, in.	0.025	0.025
	Spaciman Set	D (3 min dwell)	F (4 min dwell)

SUMMARY OF CRACK PROPAGATION FOR PWA 664

SUMMARY OF CRACK PROGAGATION FOR MAR-M 302

(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F)

Specimen	Edge Radius.		Ē	ပြီ	ack	Crack Secon	<u>k</u> Length, ond Crack	h, in. ck		рл	.k
Set	in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg
A 	0.025	Distance	ч⊣	<u> </u>	0 <	-		1.25 in	•		1.55 in.
dwell)		1400 2000	• • •	Դտտ	ちのち	$10 \\ 12$	രന	00	タア	0.0	60
		3000 4000 5000	.246 .399 .410	.257 .379 .384	. 252 . 389 . 394	.175 .176 .176	.152 .162 .162	.163 .169 .169	.130 .320 .320	.185 .314 .318	.132 .317 .319
	0.040	10	from h	to 16	0.4	. 1,	С С	ς τ τ τ	•		2.80 in.
		4000 5000	.260	.238	. 257	.136	160	.148	.162	.174	.168 .139
B (2 min dwell)	0.025	Distance 800 1000	from .225 .291	bottom: .225 .288	2.25 in .225 .290		.150	1.10 in .148 .226	•		
	0.040	Distance 1000	from 155	bottom: .147	1.80 in .151		. 035	1.20 in .063			
C (2 1/2 min	0.025 .n	Distance 300	from .058	bottom: .068	1.80 in .053	.01	<u>,</u> †	32	•		1.00 in.
		500 700 1000	136.191.257	.136 .196 .263	.136 .194 .260	.105 .157 .235	.107 .163 .243	.105 .160 .239	.324	.324	.324
	0.040	Distance 300	from .141	01	50	•		1.30 in			
		500 700	.205	.207	.205 .260	1					
		1000	. 32	\circ	1	.113	.124	.129			

•

•

•

	in.	in.		
ck Avg		.089		
rd Crack Back /	071	. 086		
Third Front Ba	. 145			o
h, in. ck Avg	1.40 in. 155	2.80 in.	3.10 in. .159 1.4 in. .051	2.90 in. .072
Crack Length, Second Crack ont Back A	156	.180	.160	. 084
Crac Sec Front	15/	• •	.158 .044	. 060
ck Avg	2.25 in .132 .194 .240 .312	1.80 in. .048 .094 .142	1.30 in. .039 .106 1.1 in.	0.90 in. .073 2.55 in.
irst Crack Back A	bottom: .130 .249 .325	bottom: .033 .085 .138	bottom: .029 .111 bottom: .110	bottom: .076 bottom: .076
Fi Front	from 134 195 231 238	from .063 .103	from .049 .101 from .073	from .070 from .034
Cycles	Distance 100 200 300 500	Distance 300 500 700	Distance 500 700 Distance 700	Distance 500 Distance 500
Edge Radius, in.	0.025	0.040	0.025 in 0.040	0.025 0.040
Specimen Set	D (3 min dwell)		E (3 1/2 min dwell)	F (4 min dwell)

TABLE 28 (Continued)

	hoper						ar +//0				
Specimen Set	Edge Radius, in.	Cycles	Front	First Crack t Back A	ck Avg	Cra Se	00	k Length, in. ond Crack Back Avg	<u>Third</u> Front B	rd Crack Back /	k Avg
A (2 min dwell)	0.025	Distance 2000 3000 4000 5000	from 155 172 172 308 323	bottom: .138 .143 .143 .310 .331	1.80 147 158 309 327	in. .114 .120 .210		3.47 .129 .134 .217 .217	in. .347 .348	.323 .329	2.50 in. .330 .339
	0.040	Distance 4030 5003	from .240 .240	bottom: .198 .210	1.40 .219 .225	in. .196 .196	5 .174 5 .182	2.20.185.189	in.		
B (2 mir dwell)	0.025	Distance 803 1033	from .048 .055	bottom: .046 .046	1.75 .047 .056	in. .046	. 050	2.35	in.		
C (2 1/2 min dwe11)	0.025 .n	Distance 500 700 1000	from .207 .261 .330	bottom: .240 .265 .346	3.00 .224 .338	in. .198 .303	8.180 283	1.45 .189 .293	in. .246	.210	2.15 in. .228
	0.040	Distance 1000	from .039	bottom: .039	2.10 .069	in.					
D (3 min dwell)	0.025	Distance 500 700 1500 2200 2700	from .187 .368 .392 .439	bottom: .187 .258 .364 .398 .409	1.40 .187 .356 .356 .419	in. 241 375 378 388 388	255 337 419	2.70 .248 .356 .380	in. .280 .315 .330	270 313 315	2.28 in. .275 .314 .323
					Þ	-	. 4	ť	t	2	†

TABLE 29 DF CRACK PROPAGATIO

(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F) SUMMARY OF CRACK PROPAGATION FOR IN-162

TABLE 29 (Continued)

	Edge					Crac	Crack Length,	h, in.			
Specimen Set	R a dius, in.	Cycles	Front	<u>ırst Crack</u> Back A	ck Avg	Front	second Crack nt Back A	ck Avg	Front B	rd Crack Back	ik Avg
D (3 min dwell)	0.040	Distance 700 1500 2200 3100	from .052 .172 .214 .230 .240	bottom: .022 .188 .205 .210	1.70 .037 .180 .210 .255	in.					
	0.025	Distance	чн	bottom:		in.		1.55 i	in.		2.65 in.
(J 1/2 min dwell)	E	1000 1000 1400	.250 .250 .254 .285	.320	.246 .279 .303	.234 .268 .297	.238 .286	.236 .277 .296	.224 .250 .261	.204 .273 .281	.214 .261 .271
	0.040	Distance 700 1000 1400	from .132 .204 .320	bottom: .106 .232 .361	1.80 .119 .218 .342	in. .070 .110 .110	.056 .110 .110	2.40 i .064 .110 .110	in. .068 .063 .063	.058 .075 .075	2.50 in. .053 .069 .069
F (4 min	0.025	Distance 300	from .131	bottom: .131	1.00 131	in.		2.25 i	in.		2.90 in
dwell)		200 700 1500	.239 .337 .410	.298 .298 .351	.297 .344 .410	.177 .279 .350	.236 .315 .360	.207 .297 .355	.275	.281	.278 .371

1			in.							in.	in.		
		ck Avg	3.10	LC LC	.242	χσ				0.93	2.80	.196	
(Specimens Cycled Between Fluidized Beds at 1990°F and 603°F)		ack		<u>د</u>	.237	δΟ				.213		.193	
	Ē	Front B		.160	.250	.284				.24.2	•	.193 .328	
			in				in			in.	in		in
	th, in.	ack Avg	1.15	.295	348	.396 396	2.00		.223	1.70 .264	1.10	.232	1.30. 153
	k Leng	second Crack ront Back Av		.298 342	· ហ ($\infty \infty$.224	.259		.300 .324	.150
	Cracl	Front		.293	.341	.406 .406		216	.222	.269		.274 .320	.166
			in.				in.			in.	in.		in.
		ck Avg	- d o	.232 .232	· 0 ·	-im	3.10 .134	.267	\mathcal{O}	2.80.295		.276	2.5 0 .219
		FITST CTACK DNT BACK AV	bottom:	- 202 - 228 - 238	.285	.310 .344	bottom: .144	. 268 212	.370	bottom: .312	bottom:	. 283 . 283	bottom: .214
		Front	44	.236	•••	• •	froη 124	- 200 - 200	101	from .278	from	. 264 . 292	from .224
		Cycles	Distance	1400 1400	3000	4000 5000	Distance 1400 2000	9000 9000 9000	5000	Distance 1003	Distance	1000 1000	Distance 1000
(Spac	Edge		0.025				0,040			0.025	0.025	Ξ	0.040
		Specimen Set	A A	dwell)						B (2 min dwell)		dvell)	

SUMMARY OF CRACK PROPAGATION FOR IN-713C

•

	БДае				Crack	Crack Lenoth				
Specimen	Radius,		First Crack	ck	Seco	Second Crack	- i	Thi	Third Crack	K
Set	in.	Cycles	Front Back	Avg	Front	Back	Avg	Front	Back	Avg
D (3 min	0.025	Distance 300	from 174	1.85 in. .162	_		2.75 in.			1.20 in.
dwe11)		500	.306 .308 .375 .323	.307	.367	.375	.371	.318	.308	.313
	0.040	Distance 700	from bottom: .075 .035	2.10 in. .080						
E 0. (3 1/2 min	0.025 in	Distance 700	from bottom: .315 .335	2.25 in. .325	.319	.303	1.20 in. .311	.238	.194	2.70 in. .216
dwell)	0.040	Distance from 700 .074	from bottom: .074 .038	2.35 in. .086						
Е С	0.025	Distance	from bottom:	2.60 in.			1.70 in.	•		
dwell)		500 . 345	.345 .303	.324	.330	.274	.302			

TABLE 30 (Continued)

,

L P									ц.		
	k	A V 0							2.15 i	.085 .097 .143	.15 4 .155 .210
	rd Crack	DACA								500	.183 .135 .265
°F)	Third Reant R	에 1 대 1	•	•		•	•		•	707	.125 .125 .155
(Specimens Cycled Between Fluidized Beds at 1990°F and 600°F)		(5 in	e	i i i i i i i i i i i i i i i i i i i	5 in	65	0 in	5 S S S S S S S S S S S S S S S S S S S	-00
	ength, in Crack	AV8	.046	1.51	.09	2.35 .084 .246	2.6	.210	N N 00	1722	332
	Judit	Dack	070.		.016	.093 .248		.210	1 I 1 1	N 00 00	.220 .220
	1 51 12		.051		.170	.075 .244		.180	0 1	170 170 222	やかる
			•	in.		in.	in.		in.		
	rack	∞ i ∞	.052	2.60 236 248	.275	1.25 .296 .303	1.35 .049 159	. 191	804	. 205 . 223 . 150	19/1
	rst C	back	.055	bottom: .262 .267	00	oottom: .284 .295	bottom: .058 161	.167	bottom: 	001	.165 .302 .312
	Fi Fi	רונ –	.048.	fron h .210 .228	.250	from 1 307 .310	from 1 .040	215	E000	235	−, ∞ ∞
	! (Uyc tes Di stanca	1000	Distance 450 625	1000	Distance 803 1000	Distance 450 625	100	Distance 25 50	100 200 300	500 700 1000
(Spac	Edze Radius,	тл. О 025		0.040		0.025	0,040		0.025 Ln		
	Specimen		(2 min	dwell)		B (2 min dwell)			C (2 1/2 min dwe11)		

5

SUMMARY OF CRACK PROPAGATION FOR M22 TABLE 31

		in.	in.		
K	Avg	1.30 .258	$\begin{array}{c} 1.60\\ 0.093\\ .100\\ .102\\ .175\\ .188\\ .225\\ .225\end{array}$		
rd Crach	Ba	.265	.030 .030 .034 .180 .199 .205		
Thi	Front	. 250 . 305		:	÷
h, in. ck	Avg	1.70 in .133 .148 .151 .182 .222	0.90 in .159 .167 .172 .195 .224 .230	1.25 in .170 .175 .177 .186	2.75 in .200
k Length, cond Crack	l 🖾	.120 .126 .126 .233 .244	.143 .158 .168 .198 .223	.162 .172 .176 .187	。 203
Crac Sec	Front	. 160 .170 .125 .128 .210 .240	.175 .175 .176 .192 .225 .236	.178 .178 .178 .178	.197
ck	Avg	2.70 in .219 .173 .180 .228 .228	2.10 in .188 .238 .244 .258 .258 .258		2.30 in .192 .199 .203 .218 .254
rst Cra	B	bottom: .135 .136 .142 .232 .238	bottom: .155 .208 .220 .248 .248 .248	bottom: .210 .235 .250 .250	bottom: 224 224 224 230 230 275 275
Ηi	Front	from 1 .203 .210 .218 .223 .241	from 220 268 268 268 272	from 166 166 199 199	from .160 .173 .175 .233 .233
	Cycles	Distance 100 200 300 500 1000	Distance 25 50 100 200 200 500 700	Distance 100 203 300 500 700	Distance 50 200 300 500 700
Edge Radius,	in.	0.040 n	0.025	0.040	0.025 .n
Specimen	Set	C 1/2 min dwe11)	D (3 min dwell)		E (3 1/2 min dwell)

TABLE 31 (Continued)

	k	Avg									
	Third Crack	Back									
	Thi	Front	I								
h, in.	ck	Avg	2.25 in.						.183	.204	
Crack Length, in.	Second Crack	Back							.160	.173	
Crac	Sec	Front							.205	.235	
			0 in.	ŝ	0	0	ŝ	m	م	σ	0 in. 2
	c k	Avg	1.50	.168	.17(.19(.193	.193	.199	.239	1.60 .068 .272
	irst Crack	Back	bottom:	.175	.175	.185	.185	.185	.185	.230	bottom: .062 .255
	н Н	Front	from	.161	٠	•	.200	•	.213	•	from .074 .289
		Cycles	Distance	25	50	100	200	300	500	700	Distance 300 500
Edge	Radius,		0.040	u							0.025
	Specimen	Set	ы	(3 1/2 min	dwell)						F (4 min dwe11)

TABLE 31 (Continued)

					in.						in.				
			k K	Avg	1.15 .253 .281						1.00		.177	.239 .288 .310	
			rd Crack	Back	.265								~	.245 .285 .325	
	600°F)			Front	1. .241 .292		J.		•		ŗ.		\sim	. 232 . 290 . 295	ů
	and 60(in.		Avg	.00 in 259 282		.15 in	327 338	.65 in	204	2.60 in	26 33	4 7 t	455 488 500	l.80 in 041
8 A	,	gth,	rack	A	•• 5			• •	2	•	2	• •	• •	• • •	•
	1990°F	ik Len	ond Crack	Back	.260 .286			.324 .346		.192		- 20 CO C	301	.464 .485 .491	。042
ON FOR	Beds at	Crack	Second	Front	.258			.330		.215		-4-00	ーク・	.445 .490 .509	.040
3ATI					in.	in.	in.		in.		in.				in.
PROPA(Fluidized		01	Avg	2.80 .275 .324	1.25.036	9.	.346 .346	1.80.029	.165 .298	$-10 \sim c$.288 343	- S	500	1.28, 060
F CRACK PROPAGATION FOR	Between F1		irst Cra	Back	bottom: .266 .323	bottom: .038	10	.358	bottom: .003	.180	bottom: .077 243	346	.458	.464 .480 .520	bottom: .050
SUMMARY OF	- F		F	Front	from 1 .284 .325	from h .034		.345 .358	from .049	.150 .293	from .065 .05	.280	.440 .443	.445 .470	from 。070
SUM	(Specimens Cycled		Ŧ	Cycles	Distance 4000 5000	Distance 5000	Distance	4000 5000	Distance 1000	1400 2000	Distance 700 980	1400	3500	4000 4400 5000	Distance 5000
	(Spec	ļ	Ra	in.	0.025	0+0.0	0.025		0.025 min		0.025				0.040
			Specimen	Set	A (2 min dwell)			dwell)	C (2 1/2 m	dwell)	D (3 min	(TTOMD			

-

.

.

.

$ \begin{array}{c} \mbox{First Crack Iength, in.} \\ Set in. cycles in. cycles Front Back Avg end Crack Avg Front Back Avg end Crack Avg end from the end of t$													
adius, Cycles Front Back Avg Front Back Avg Front Back Third Crack in. Cycles Front Back Avg Front Back Avg Front Back Back Avg Front Back $1,025$ Distance from bottom: 2.10 in. 11400 .014 .018 .016 in. 2.35 in. 2.35 in. 1000 .029 .025 .027 166 .154 .160 .154 .160 .154 .160 .068 .040 .054 in.		Edge					Crack	t Lengt	h, in.				
in.CyclesFrontBackAvgFrontBack0.025Distancefrombottom:2.10in.1400.014.018.016.016.0161000.029.025.027.0271500.148.156.152.166.154.040Distancefrombottom:1.75in040Distancefrom.040.054.054	men	Radius,		Fi	rst Crad	ck	Secc	nd Cra	ck	Thir	rd Crac	ĸ	
1.025 Distance from bottom: 2.10 in. 1400 .014 .018 .016 in. 1200 .014 .018 .016 .130 in. 1000 .029 .025 .027 .156 .152 .166 .154 1500 .148 .156 .152 .166 .154 1500 .068 .040 .054 in.		in.		Front	Back	Avg	Front	Back	Avg	Front	Back	Avg	
1.025 Distance from bottom: 1.30 in. 1.025 Distance from bottom: 1.30 in. 1000 .029 .025 .027 .166 .154 1500 .148 .156 .152 .166 .154 1.040 Distance from bottom: 1.75 in. 1500 .068 .040 .054		0.025	Distance		ottom:	2.10 in.	-						
0.025 Distance from bottom: 1.30 in. 1000 .029 .025 .027 1500 .148 .156 .152 .166 .154 0.040 Distance from bottom: 1.75 in. 1500 .068 .040 .054	1) 11	-	1400		010.	010.							
1000 .029 .025 .027 1500 .148 .156 .152 .166 .154 0.040 Distance from bottom: 1.75 in. 1500 .068 .040 .054		0.025	Distance	from	ottom:	1.30 in.			2.35 in.				
Distance from bottom: 1500 .068 .040	52		1000 1500	.148	. 025	.027		.154	.160				
		0.040	Distance 1500	from 068	ottom: 040	1.75 in.							
			00074	•	·	t ^ > •							

TABLE 32 (Continued)

l				in.				in.			
	X	Avg		1.70 i	.167			2.60 i	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.320	
	rd Crac	Back			.166 .168				.195	.234	
) 600°F)	Thírd	Front	÷		.168			J.	.175	.222	ť
and 600	n, in.	Avg	1.55 in .104	1.45 in.	.201 .247	2.00 in	.103	1.60 in.	.068 .243	.310	1.30 in .180 .208 .212
1990°F	k Length, ond Crack	Back	.103		.203 .246		.073		- 1 - 1	.315	.196 .190 .198
FUK UDIMEL 700 Beds at 1990°F	Crack Le Second	Front	.105	•	.199 .248	•	.132	•	− C 4	.305	
	X	Avg	1.95 in. .225	2.42 in .011 .015 .026	. 196	1.60 in	.161	1.	193	1 C I C I	1.40 in .184 .218 .242
ck rkurau tween Flu	i in	Bac	bottom: .194	bottom: .018	.020 .088 .173	ottom:	.132	j, t	105	.285	bottom: .183 .196 .239
Cycled Bet		Front	from .255	from 1 022 034		from	.190	from 120		.317	from .190 .238
SUMMARY OF CRACK FROFAGALLON (Specimens Cycled Between Fluidized		Cycles	Distance 1003	Distance 200 300 450	629 800 1000	Distance	1000	Distance	300	1000	Distance 500 700 1000
(Spec	Edge Radius.	in.	0.025	0.025		0,040		0.025	11-		0.040
	Specimen	Set	A (2 min dwell)	B (2 min dwell)					dwell)		

.

SUMMARY OF CRACK PROPAGATION FOR UDIMET 700 (CAST)

							11	11			
Specimen	Edge Radius,		F	trst Cra	ck	0	k Length, ond Crack	h, in. ck	Thi	Cra	ck
Set	în.	Cycles	Front	Back	Avg	Front	nt Back /	Avg	Front Ba	ick	Avg
D (3 min dws11)	0.025	Distance 100 200	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 00 u	_ ∩ ⊙ <	.0,	ω c	√† ∞ r	•		1.70 in.
		300 200 200	295 295	.291	.293 .294 .333	.235 .235 .239	233 233 233 233	.234 .234	.221 .222 .222	.242 .242 .278	.232 .232 .250
	0.040	Distance 200	101 103	ഠന	а С	1 •		1.40 in	•		
		300 500 700		.136	.313 .313	.173 .330 .330	.149 .332 .332	.161 .331 .331			
E (3 1/2 min	0.025 .n	Distance 300	from 1 .089	bottom: .093	2.60 in .091	10.	~	1.40 in. .072	•		1.70 in.
(TTEMD		002	.250	マム	NO	.290	.220		.160	.120	.140
	0.040	Distance 703	from 1 .219	bottom: .195	1.40 in .207	1. .080	.140	1.80 in .110	.106	.080	2.30 in .093
F (4 min	0.025	Distance	•	bottom: 065	. 3	J.		2.30 in	•		1.75 in.
dwell)		300 500	242	. 303	.241	.235 .278	.227	.231 .279	.255	.241	.248
	0.040	Distance	from 1 176	0,4	1.70 in			2.50 in	•		
		503	.228	.215		.233	.227	.230			

.

TABLE 33 (Continued)

	700 (WROUGHT)
	C02
	UDIMET
34	FOR
TABLE 34	CRACK PROPAGATION FOR
	CRACK
	OF
	SUMMARY

.

.

8		in.			in.				in.		
	ck Avg	2.24	.283		2.00	.205.266			3.00	.300	.371
	Third Crack t Back Av		.286			.214				σ .σ.μ	.355
600°F)	Tn Front	•	.290		÷	.196			·	015	.372 .399
and 600	h, in. ck Avg	1.00 in	.310		1.20 in	.302.352	2.45 in	.123	2 00		.306
1990°F	engt Cra		.320			.297 .342		.128	7	0-0	.310
Beds at	Crack L Second Front Bag		. 300	·	÷	.352	·	.118	.02	90	.302 .302 .315
Fluidized	ck Avg	1.50 in	010 024 024 048 049 232	1.65 in .053	2.30 in .009 .014 .015	1 1 1	1.90 in .151	0	05	$\sim \infty \circ$. 342 . 341 . 342
Between Fl	rst Crack Back A	bottom:	.038 0588 0588 0588 0588 0588 0588 0588 0	bottom: .036	bottom: 008 .039	.151	bottom: .139	.213	bottom: .203	202	.339 .339 .335
	Front	from	$\begin{array}{c} & - \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 2 \\ & 0 \\ & 0 \\ & 3 \\ & 0 \\$	from .050	from .017 .020		from 163		from 194		.343 .343 .349
(Specimens Cycled	Cvcles	Distance	200 300 625 1000	Distance 1000	Distance 200 300 450	800 800 1000	Distance 800	1000	Distance 100	200 300	000 700 1000
(Spec	Edge Radius, in.	0.025		0.040	0.025		0,040		0.025 in		
	Specimen Set	A.	dwell)		B (2 min dwell)				(2 1/2 min	\Box	

TABLE 34 (Continued)

	in.	in.		in.	in.
ack Avg	1.60 043 .102 .238 .257 .318	0	.284 .320 .343 .343 .365 .371	2.05 .234 .276 .276 .291 .307 .347	1.80
tird Cr Back	.033 .102 .238 .258 .258		.278 .320 .342 .364 .389	.233 .275 .292 .305 .340	. 285
Front	іп. .053 .102 .238 .255 .307		.289 .320 .344 .366 .370	in. 235 276 290 308 342	in. .297
it, in. Ick Avg	010004m	10	.284 .308 .344 .348 .348 .375	1.00 j .246 .276 .293 .308 .341	2.15 i 195 .198 .275 .275 .319
k Lengt ond Cra Back			.278 .303 .346 .349 .376 .380	.242 .277 .291 .307 .328	.210 .210 .281 .281
Crack Secor Front	.059 .121 .239 .242		. 290 . 313 . 342 . 347 . 374	. 234 .275 .295 .309	.180 .185 .269 .318
ck Avg	3.1 in. 220 249 249 324 324	67	.287 .308 .345 .372 .372 .386	2.90 in .267 .298 .310 .316 .346	2.90 in .291 .292 .315 .323 .355
irst Cra Back	bottom: 211 267 291 309 219	~0	.281 .302 .341 .373 .373 .373	bottom: .265 .299 .309 .315 .323	bottom: .291 .291 .291 .317 .317 .350
Front	from 231 231 231 310 329	ററ	. 293 . 314 . 371 . 375 . 392	from .269 .311 .317 .359	from 291 292 312 328 360
Cycles	Distance 200 300 500 700 1000	Distance 25	500 200 500 700	Distance 100 200 300 500 700	Distance 50 100 200 300 500 700
Edge Radius, in.	0, 040 .a	0.025		0.040	0.025 .n
Spacinan Set	C (2 1/2 mi dwell)		el		E (3 1/2 mi dwell)

4

.

	ндар						k Tenot				
Specimen	Radius,		F	1H	ck		Second Crack			Third Crack	ck
Set	in.	Cycles	Front	Back	Avg	Front	Back	Avg	Front	Back	Avg
E (3 1/2 min	0.040 n	Distance 100	from .186	bottom: .202	60 94	in.		2.30 in			
dwell)		200 300	.186	.206 .248	.198						
		500 700	•••	.273	80	.210	.250	.230			
Ē	0.025	Distance	from	bottom:	90			- 	•	,	\sim
(4 min		25	-2	.283	8	8	∞	8	9	9	9 I
dwell)		50	ຕ	.333	\sim	2	1		\sim	\mathcal{C}	\sim
		100	ີ .	.333	\sim	\mathcal{C}	1	2	2	\mathbf{c}	33
		200	<u>е</u>	.355	4	\mathbf{c}	\sim	\mathcal{C}	\mathcal{C}	4	4
		300	.34	.360	.350	.347	. 335	.341	.348	.350	.349
		005	Ϋ́,	C14.	\supset				\cap	0	_0
	0,040	Distance		bottom:	00	in.		2.40 in	n.		1.30 in.
		0 0 0 0 0	.214 224	. 192	.203	- 4	\sim	ۍ ،			
		200	.224	.220	5	.246	.244	.245	T	8	19
		300	.255	.253	ഹ	40	ŝ	40	.215	.195	.205
		005	.2/2	• 296	∞	\supset	\supset	>	Ø	ע	Ø

TABLE 34 (Continued)

.

				in.	in.
	ick Āvg			1.80 .296 .376	2.15 .330 .397
	Third Crack t Back A			.285 .349	.334
°F)	Th Front			.407	.325 .383
' and 600°F)	h, in. Ick Avg			1.20 in. .252 .338 .396	1.15 in .215 .344 .403 .453
1990°F	Crack Length, Second Crack ont Back Av			.253 .335 .384	.213 .350 .425
Beds at	Crack Le Second Front Bac	÷	·	1. .251 .340 .408	1. 217 .338 .381 .439
Fluidized	ck Avg	l.68 in .435 .600	2.10 in .371 .550 .588	2.70 in. .155 .158 .188 .388 .405	3.00 in .230 .360 .422 .473
tween Fl	First Crack nt Back A	bottom: .431 .600	bottom: .380 .575 .590	bottom: .150 .200 .381 .390	bottom: .243 .360 .438 .490
led Bet	Front	from .439 .600	from .363 .525	from .160 .395 .420	from t .213 .360 .405 .455
(Specimens Cycled Be	Cycles	Distance 500 1000	Distance 300 500 700	Distance 100 200 300 500 700	Distance 100 200 300 500
(Spec	Edge Radius, in.	0.025 min	0.025	0.025 min	0.025
	Specimen Set	C (2 1/2 m dwe11)	D (3 min dwell)	E (3 1/2 m dwell)	F (4 min dwell)

-

TABLE 35 F CDACK DDADACATT

SUMMARY OF CRACK PROPAGATION FOR TD-NiCr

THERMAL CYCLES REQUIRED TO INITIATE THE FIRST CRACK IN EACH EDGE

Material and Condition	Set A Set A (2 min dwell .025 .040 edge edge	et A dwell) 040 edge	Set B (2 min dwell) .025 .040 edge edge	Set C Set C (2½ min dwell) .025 .040 edge edge	Set D Set D .025 .040 edge edge	Set (3 ¹ 5 min .025 edge	E dwe11) .040 edge	Set F Set F (4 min dwe .025 .04 edge edg	F dwell) .040 edge
0001 4	006	3500	713 >1000	400 1200	400 800		600		400
B1900, coated	1700	3500	4	Λ	1190 1700 38 150	>1400 >1 250	>1400 75	850 > 3 8	>1500 400
IN-100	< 006	900 >1000 700 3500	21/ /2C				>1400	1250	400
IN-IUU, COALEU	>5000 >5000	>5000		>2000 >2000	2400 >5000	>1400 >	>1400		>1500
FWA 1401, coated		900 >5000	1700 >5000	^	2		>1400	<pre>>1500 ></pre>	>1500 600
X-40		713	713 900 537 713	600 1190 250 400	600 600 75 400	600 250	250 250	150	400
WI-52	906 166	006				13	38		13
MAK-M 200 Dur 664	>5000 >5000	>5000	× ۲	>2	4700 >5000		>1400		>1500
FWA 004 MAP-M 302	006	2500		250 250	75 250	400	600	400	400
TN-162	1700	3500	713 >1000		400 600	400	600	250	>500 > 500
IN-713C	006	-	7	400 850	250 600 13 75	600 38	13	250	>500
M22	900		2/2 21/ 2500 >5000	>2 >	4	۸	1400	850	1250
TAZ-8A TAZ-8A TAZA TAGE TAGE TAGE TAGE TAGE TAGE TAGE TAG			166 713		75 150	250	600	150	250
Udimet /00 (cas	(cast) 200 1000 (75 150	13 75	38	75	13	38
TD-NICT	-4000	>4000 >4000	>4000 >4000	400 >1000	250 >1000	75	> 700	75	>500

SUMMARY OF SPECIMENS SECTIONED FOR METALLOGRAPHY AND SEM FRACTOGRAPHY

	As	Set (2½ m	nin	Set D (3 min	Set (4 mi	n
A11oy	Received: Met.	dwel Met.	SEM	dwell): Met.	dwel Met.	SEM
B1900	х			x	x	
B1900, coated				Х		
IN-100	х	Х	Х	x	X	x
IN-100, coated				Х		
PWA 1401				х		
PWA 1401, coated				х		
X-40	Х			X		
WI-52	Х	X		x	X	
MAR-M 200	Х	X	X	X	Х	Х
PWA 664				х		
MAR-M 302	Х	X	X	х	X	
IN-162	Х			Х		
IN-713C	Х	Х		X		
M22	Х	X		Х	X	
TAZ-8A	Х		,	X		
Udimet 700 (cast)	х	X	х	X	X	X
Udimet 700 (wrought	z) X	X	X	X	X	X
TD-NiCr	Х	X		X	x	X

	1 1 1 1 1	~		രരസ്	0 m m O	4
	E 1) RC	38	36		0339 0339 0339	*
	Set F (4 min dwell Cycles	500	500	500 700 1500	500 700 1500	500
		8 9	37	65 6 6 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7	37 34 34	35
SPECIMENS	Set E (3 ² min dwell) Cycles	700	C07	700 1000 1400	700 1000 1400	002
		35 35 35	36	2223335454 222333545	35 35 34 33 33	34
THERMAL FATIGUE	Set D (3 min dwell Cycles	700 980 1400 2000	002	700 980 2000 3500 4400 5000	703 980 1400 2000	002
RMAL		3968	36	3 4 6 3 3 4	35 32 31	34
0F	Set C (2½ min dwell) Cycles F	1000 1400 2000	1000	1000 1400 2000	1000 1400 2000	1000
() TL		38	36		35 35	34
(ROCKWELL	Set B (2 min dwell) Cycles	1000	1000	1000 1400 2000 4000 5000	1000 1400 2000	1000
SSES		33555 33455 33455 33455 33455 33455 33455 33455 33455 33455 33455 33455 33455 33455 33455 334555 334555 334555 334555 335555 335555 3355555 33555555 33555555	36	00000000000000000000000000000000000000	36 32 32	35 30 30 30 30 30 30 30 30 30 30 30 30 30
E HARDNESSE	Set A (2 min dwell <u>Cycles</u>	1000 1400 2000 3000 4000	1000	1000 1400 2000 4000 5000	1000 1400 2000	1000 1400 3000 4000 5000
SURFACE	As Recd.	38	38	6£	38	36
	Alloy	B1900	IN-100	FWA 1401	X-40	WI-52

.

				TADLE		(concinued)							
Alloy	As Recd.	Set A (2 min dwell Cycles		Set B (2 min dwell Cycles	1) RC	Set C (2½ min dwell) Cycles		Set D (3 min dwell Cycles		Set E (3½ min dwell) Cycles		Set F (4 min dwelî Cycles	RC R
MAR-M 200	41	1000	38	1000	38	1000	37	002	37	700	37	500	38
PWA 664	41	1000 2000 5000 5000	<i>000000000000000000000000000000000000</i>	1000 1400 2000 4000 5000	00000000000000000000000000000000000000	1000 1400 2000	35 35 35	700 1400 3500 5000 5000 5000 5000 5000 5000 5	80000000000000000000000000000000000000	700 1000 1400	9 9 9 9 9 9 9 9 9	500 700 1500	39 30 90 90 90 90 90 90 90 90 90 90 90 90 90
MAR-M 302	49	1000 2000 3000 5000	8811202 3817202	1000	42	1000	41	002	43	700	41	500	41
IN-162	40	1000 1400 3000 5000	37 35 34,5 32 32	1000	36	1000	37	700 980 1500 2200 3100	35 35 35	700 1000 1400	37 34 34	500 700 1500	20 20 20 20 20 20 20 20 20 20 20 20 20 20
IN-713C	40	1000 1400 3000 5000	30 33 280 23 34 280 23 34 280 37	1000	37	1000	36	700	36	700	37	500	37

•

-

•

TABLE 38 (Continued)

Alloy	As Recd.	Set A (2 min dwell Cycles	RC	Set B (2 min dwell Cycles	N T C	Set C (2½ min dwell) Cycles		Set D (3 min dwell) Cycles	R _C	Set E (3½ mii dwell Cycles		Set F (4 min dwell) Cycles	RC
M2 2	37	1000	38	0001	38	1000	39	700	39	002	38	500	39
TA Z - 8A	46	1000 1400 3000 5000	5000440 44444	1000 1400 3000 5000 5000	77777777777777777777777777777777777777	1000 1400 2000	44 43	700 980 22000 3500 44000 5000	50000000000000000000000000000000000000	700 1000 1400	440	500 700 1500	444 4446
U700 (cast)	38	1000	35	1000	36	1000	37	700	36	200	35	500	37
0700 (wrought) 40	;) 40	1000	37	1000	36	1000	36	700	36	200	38	500	36
TD-NiCr	30	1000 1400 2000 4000	26 26 26 26	1000 1400 2000 3000 4000	22222 52225 50525 50525 5055 5055 5055	1000	28	002	28	700	27	500	29

TABLE 38 (Continued)

White Layer Adjacent_{*} to Crack . . D. N N.D. 1 Below Surface (.003 in.) Crack Tip Microhardness, DPH (500 g) Near in. Below 100-.150 Surface (.003 in.) Near Crack Near Surface .003 in. Removed Crack from Cycles 500 C044 Set \square Ŀ PWA 1401, coated IN-100, coated B1900, coated **MAR-M** 200 Material PWA 1401 PWA 664 IN-100 WI-52 B1900 04-X

N.D.

MAR-M 302

 U D H H

 \mathbf{C}

IN-713C

IN-162

C

(wrought)

Udimet 700

TD-NiCr

Udimet 700 (cast)

TAZ-8A

M22

alloys.

MICROHARDNESS MEASUREMENTS IN THERMAL FATIGUE SAMPLE SECTIONS

⁺Hardness in white-etching layer not determined on cobalt-base load. Measured with 25

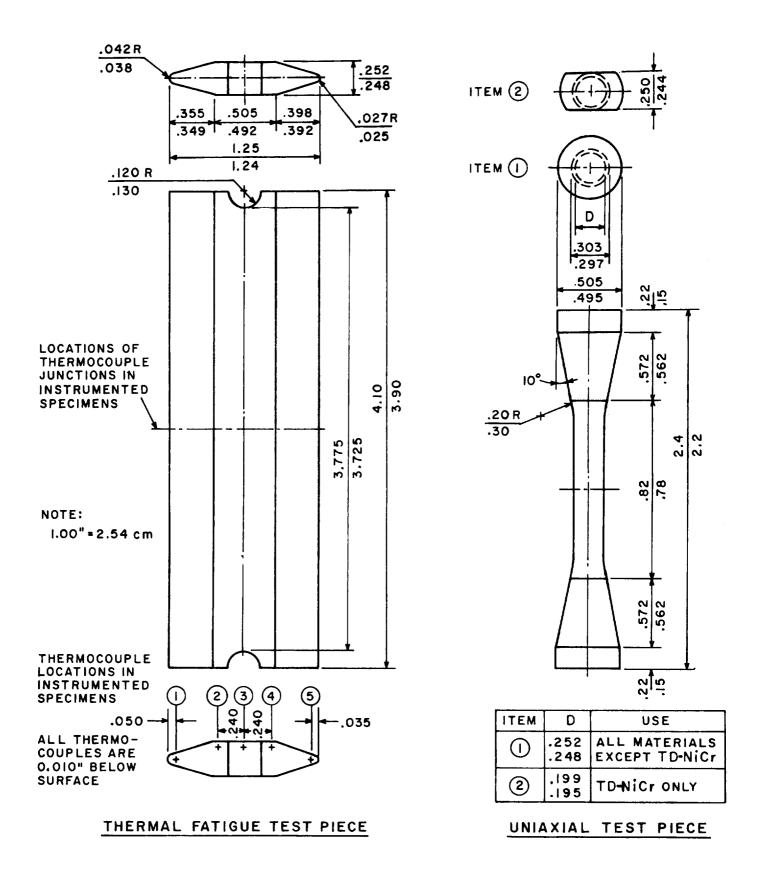
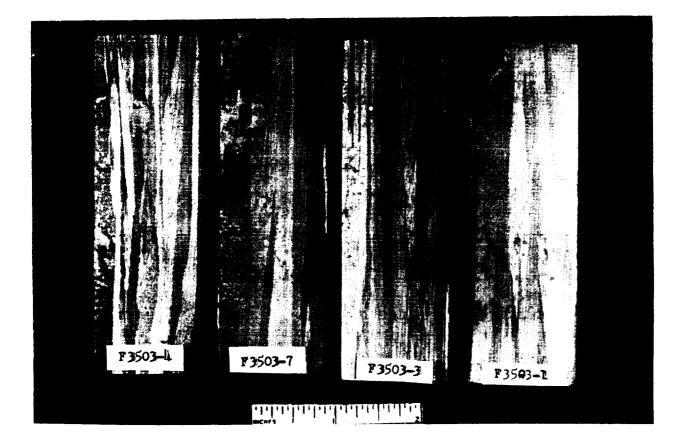
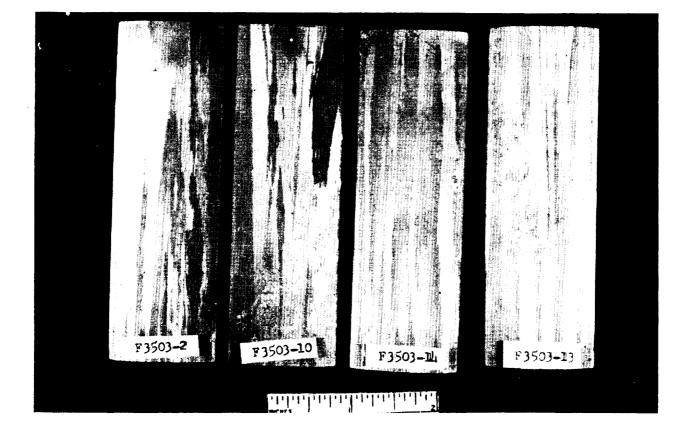
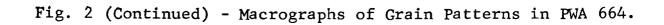


Fig. 1 - Dimensions of Test Specimens Used in the Program.

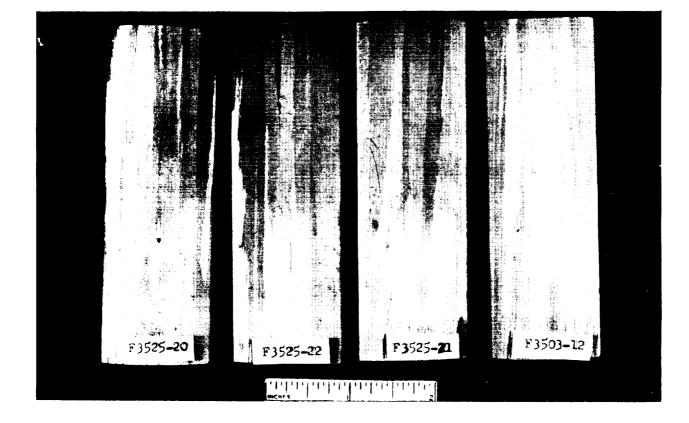
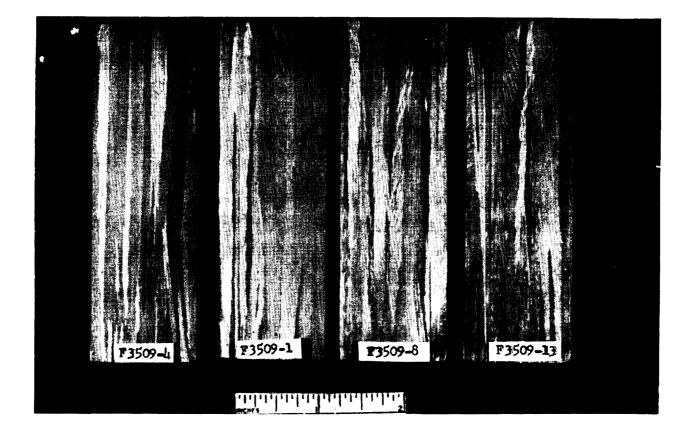


Fig. 2 - Macrographs of Grain Patterns in PWA 664.


(b)

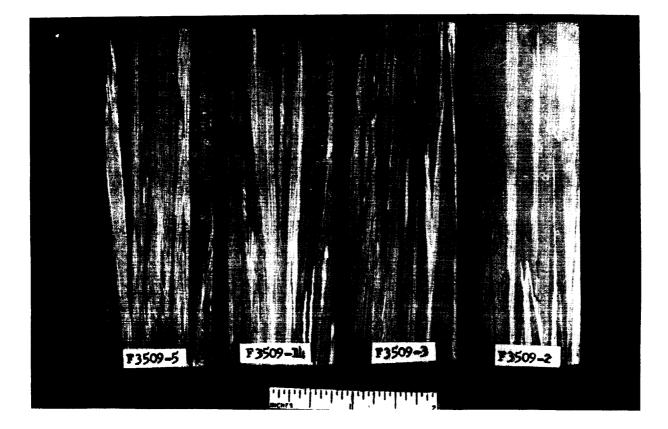

(c)

Fig. 2 (Continued) - Macrographs of Grain Patterns in PWA 664.

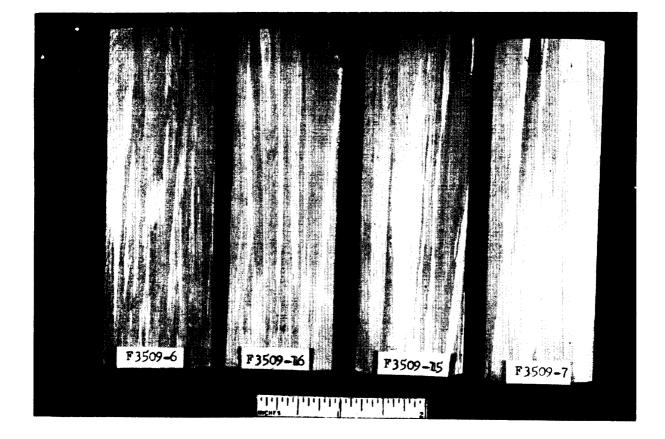

(a)

Fig. 3 - Macrographs of Grain Patterns in PWA 1401.

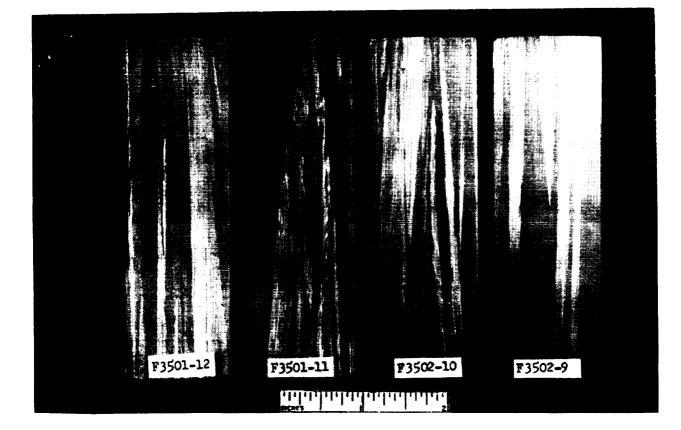

(b)

Fig. 3 (Continued) - Macrographs of Grain Patterns in PWA 1401

(c)

(d)

Fig. 3 (Continued) - Macrographs of Grain Patterns in PWA 1401

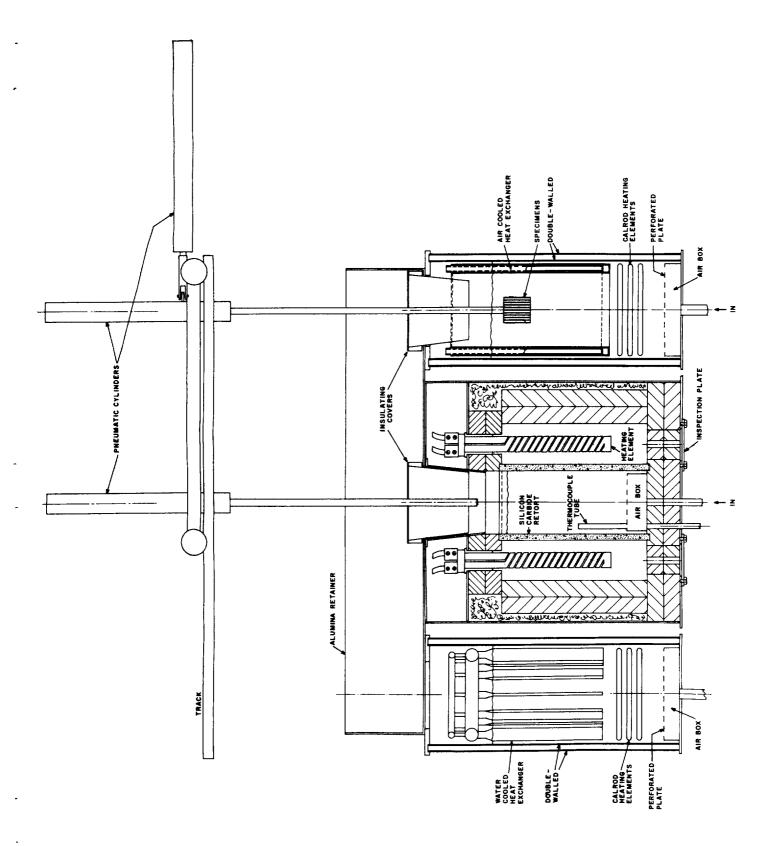


Fig. 4 - Schematic View of Thermal Fatigue Facility.

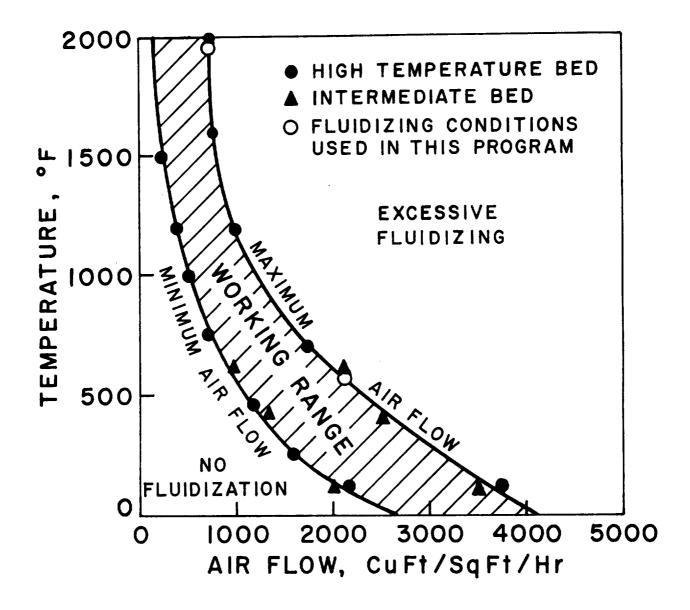
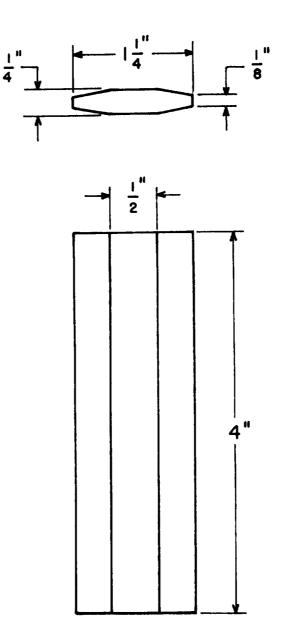



Fig. 5 - Fluidized Bed Air Requirements (28-48 mesh tabular alumina particles).

.

.

Fig. 6 - Simulated Thermal Fatigue Specimen Utilized During Fixture Development.

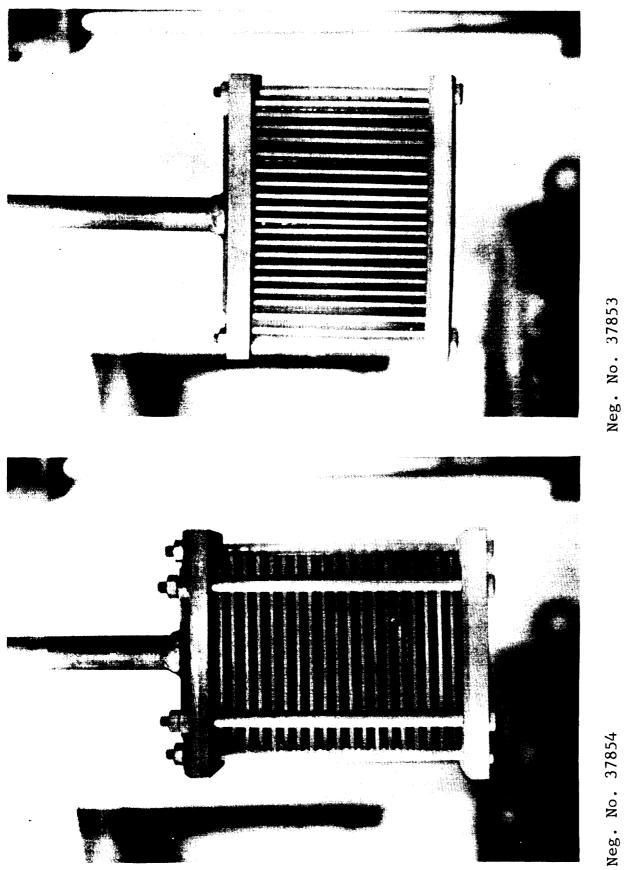
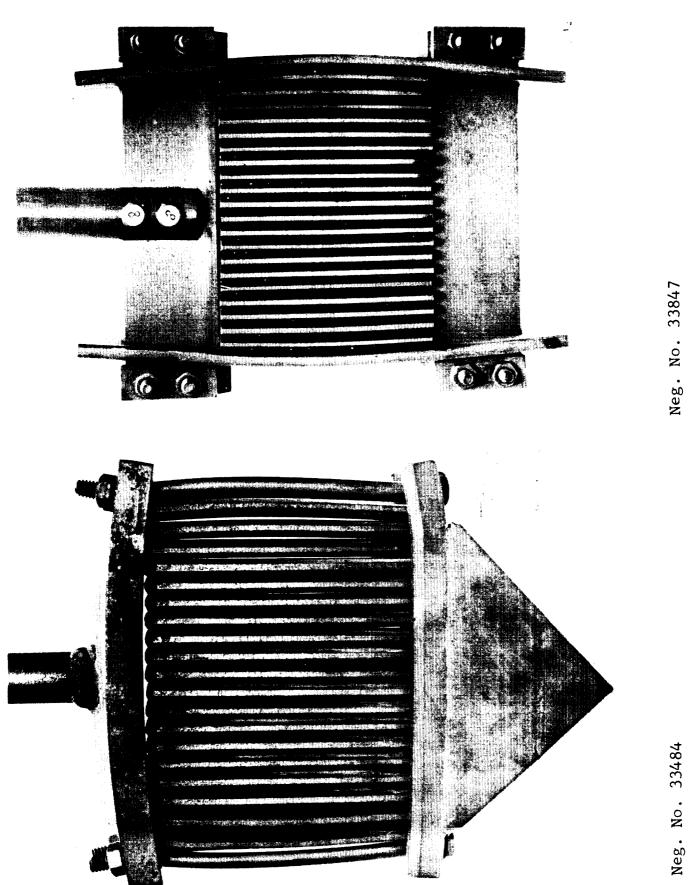
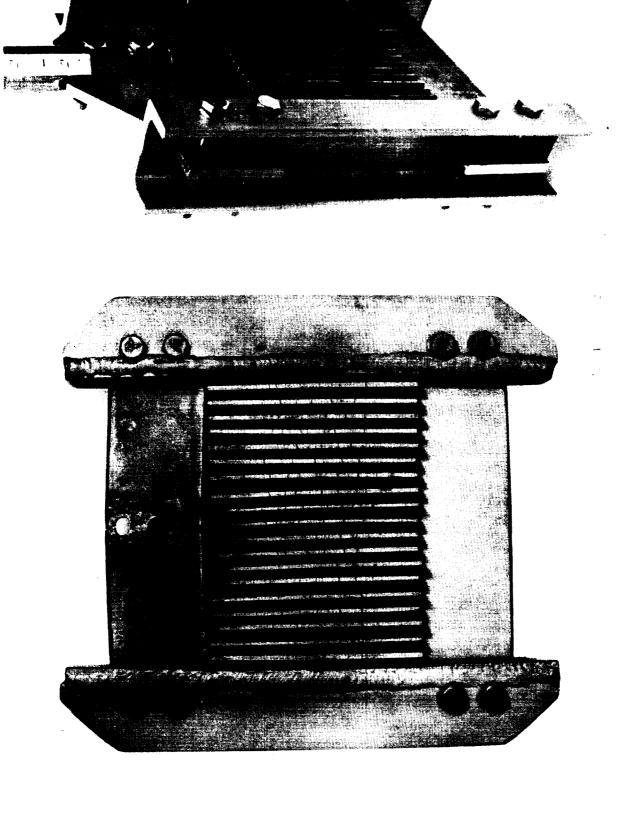



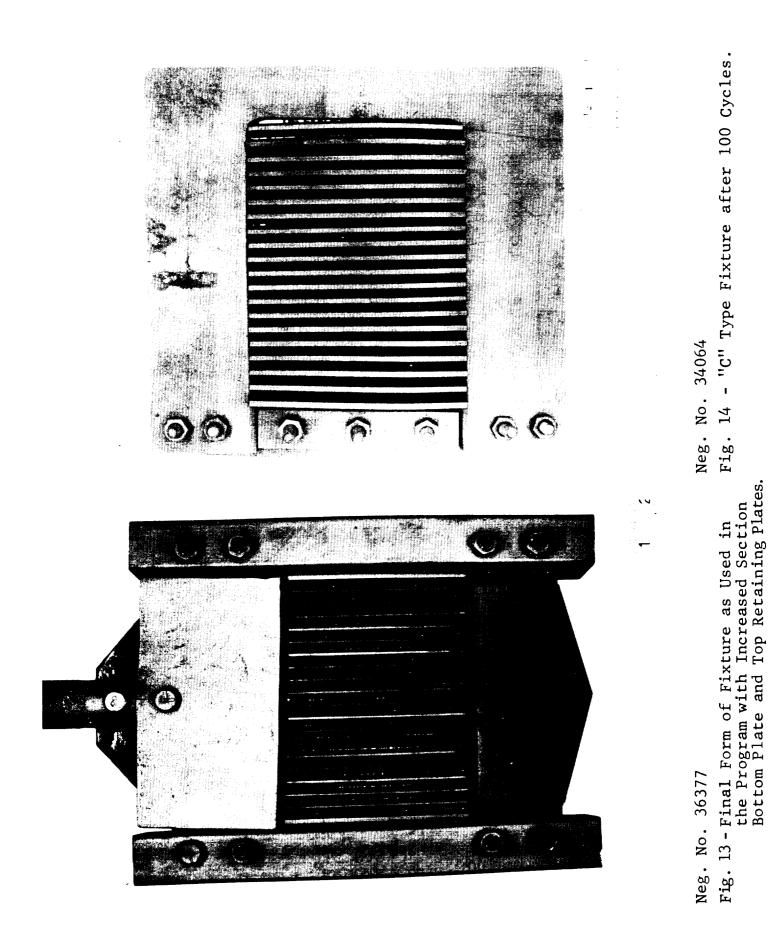
Fig. 7 - Temperature Gradient in Hori-zontally Held Specimens.

Fig. 8 - Temperature Gradient in Vertically Held Specimens.

9 - Distortion in a Stiffened Variation of the Fixture Shown in Fig. 8 after 100 Cycles of Operation.

Fig. 10 - Use of Location Slots in the Test Pieces with Top and Bottom Plates in the Vertical Plane.


Fig.



Neg. No. 34825

Fig. 11 - Fixture with Welded Channel Sections after 580 Cycles.

Neg. No. 33949

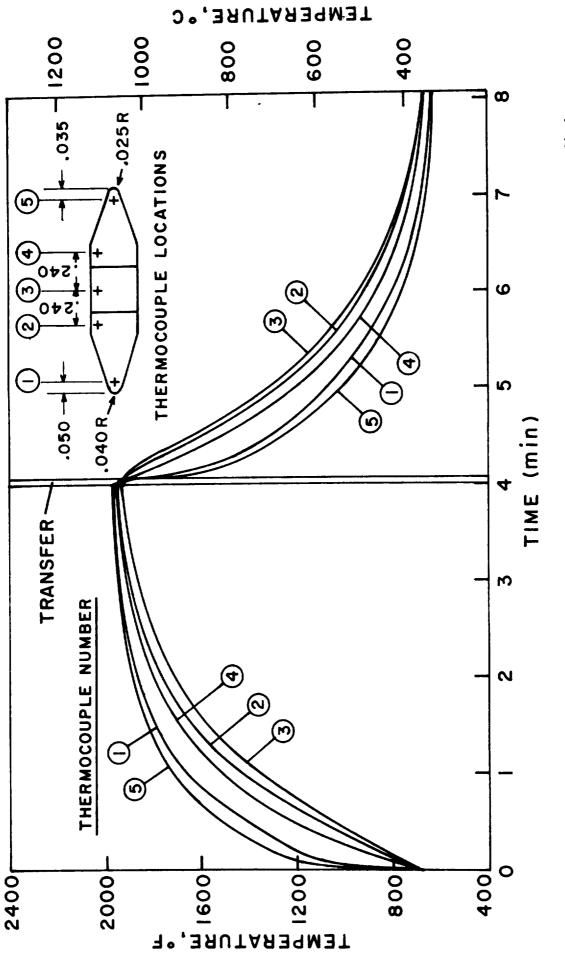
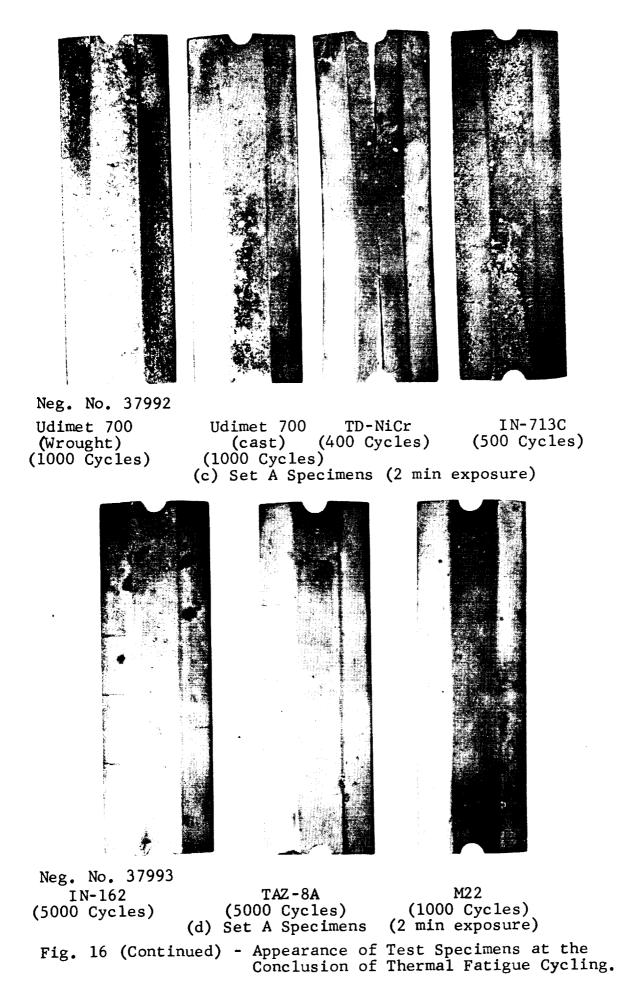
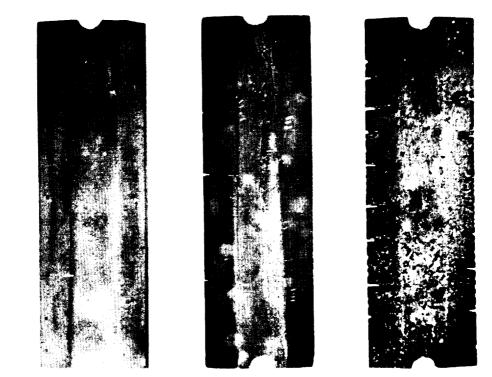


Fig. 15 - Temperature Calibration Curves for IN-100 Cycled under Set F Conditions




Neg. No. 37994 B1900 B1900 Coated MAR-M 200 PWA 664 (5000 Cycles) (5000 Cycles) (1000 Cycles) (5000 Cycles) (a) Set A Specimens (2 min exposure)

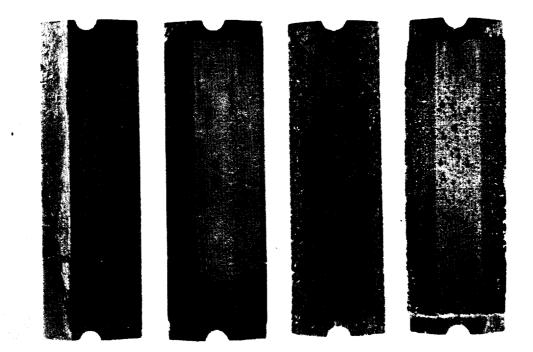
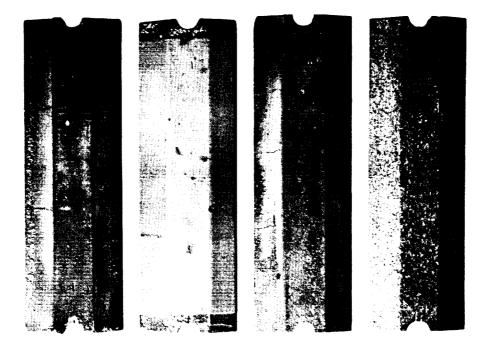
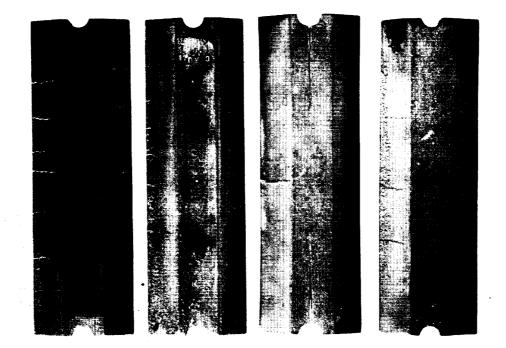

Neg. No. 37995 IN-100 IN-100 Coated PWA 1401 PWA 1401 Coated (1000 Cycles) (5000 Cycles) (5000 Cycles) (5000 Cycles) (b) Set A Specimens (2 min exposure) Fig. 16 - Appearance of Test Specimens at the Conclusion

Fig. 16 - Appearance of Test Specimens at the Conclusion of Thermal Fatigue Cycling.

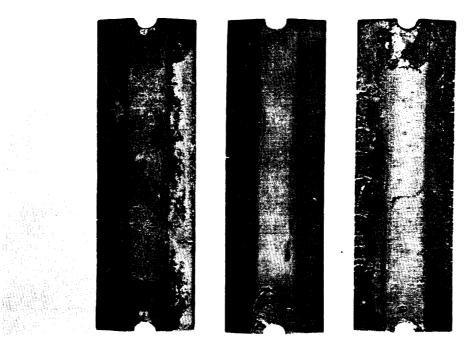


Neg. No. 37996 X-40 MAR-M 302 WI-52 (2000 Cycles) (5000 Cycles) (5000 Cycles) (e) Set A Specimens (2 min exposure)



Neg. No. 37776 B1900 B1900 Coated MAR-M 200 PWA 664 (2000 Cycles) (4400 Cycles) (700 Cycles) (5000 Cycles) (f) Set D Specimens (3 min exposure) Fig. 16 (Continued) - Appearance of Test Specimens at the Conclusion of Thermal Fatigue Cycling.

IN-100 IN-100 Coated PWA 1401 PWA 1401 Coated (700 Cycles) (2000 Cycles) (5000 Cycles) (5000 Cycles) (g) Set D Specimens (3 min exposure)



Neg. No. 37775 Udimet 700 Udimet 700 TD-NiCr Inconel 713C (Wrought) (Cast) (700 Cycles) (700 Cycles) (700 Cycles) (700 Cycles) (h) Set D Specimens (3 min exposure)

Fig. 16(Continued) - Appearance of Test Specimens at the Conclusion of Thermal Fatigue Cycling.

Neg. No. 37774 Inconel 162 TAZ-8A M22 (3100 Cycles) (5000 Cycles) (700 Cycles) (i) Set D Specimens (3 min exposure)

Neg. No. 37777 X-40 MAR-M 302 WI-52 (2000 Cycles) (700 Cycles) (700 Cycles) (j) Set D Specimens (3 min exposure)

Fig. 16 (Continued) - Appearance of Test Specimens at the Conclusion of Thermal Fatigue Cycling.

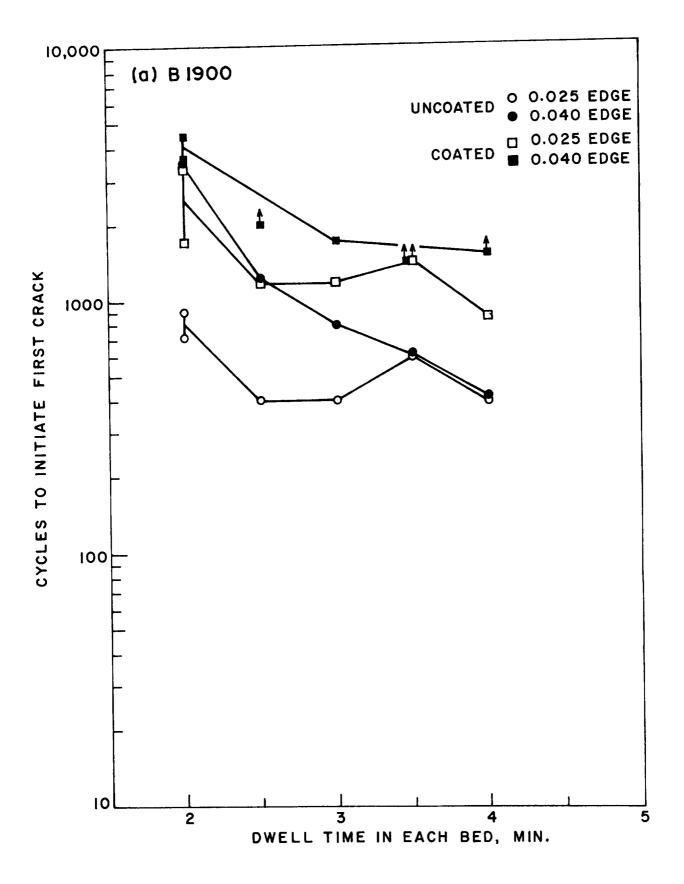


Fig. 17(a) - Thermal Cycles to Initiate the First Crack in B1900 Test Specimens in Either Test Edge under Test Conditions A to F.

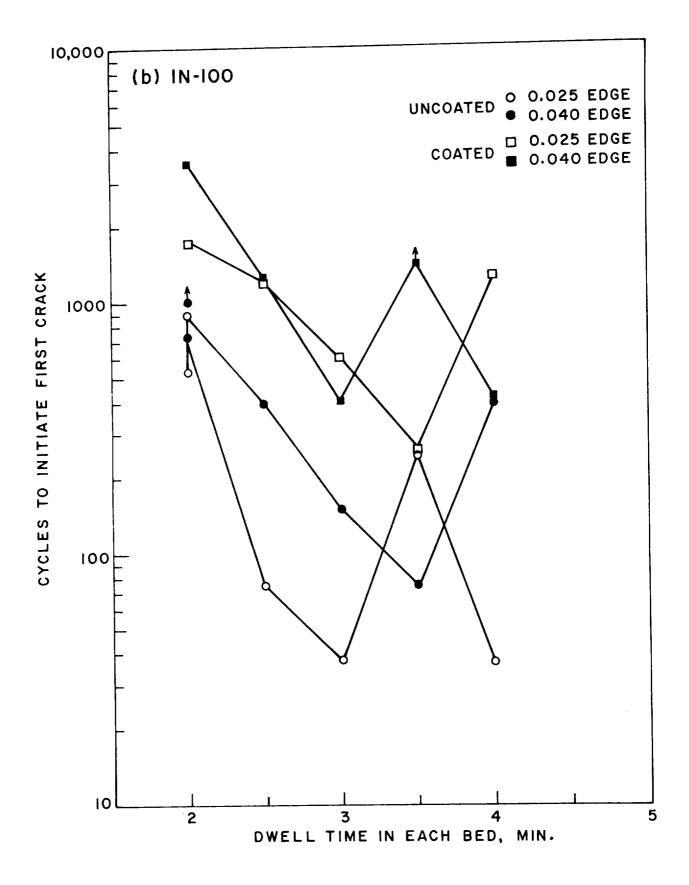


Fig. 17(b) - Thermal Cycles to Initiate the First Crack in IN-100 Test Specimens in Either Test Edge under Test Conditions A to F.

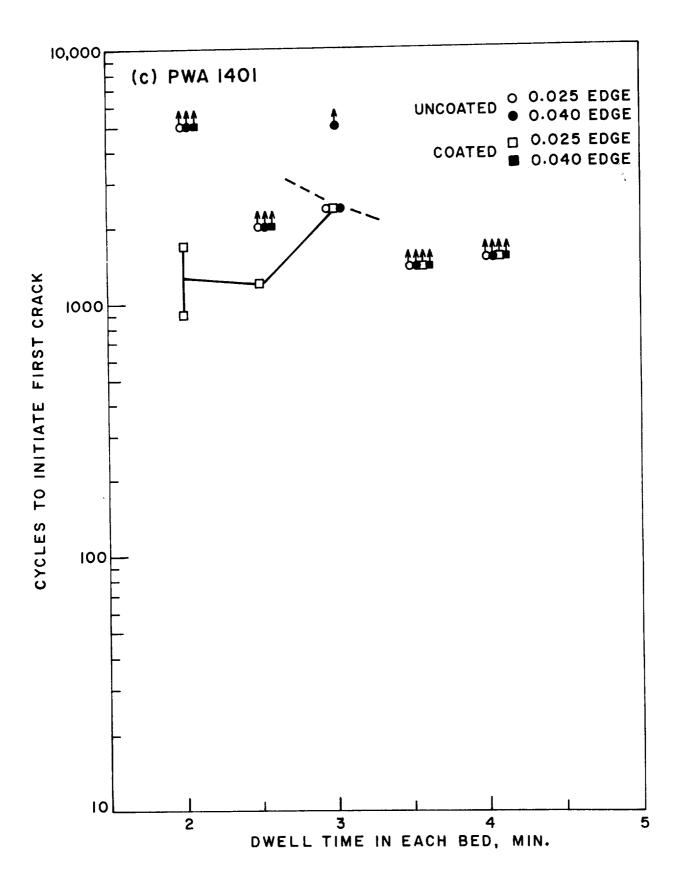


Fig. 17(c) - Thermal Cycles to Initiate the First Crack in PWA 1401 Test Specimens in Either Test Edge under Test Conditions A to F.

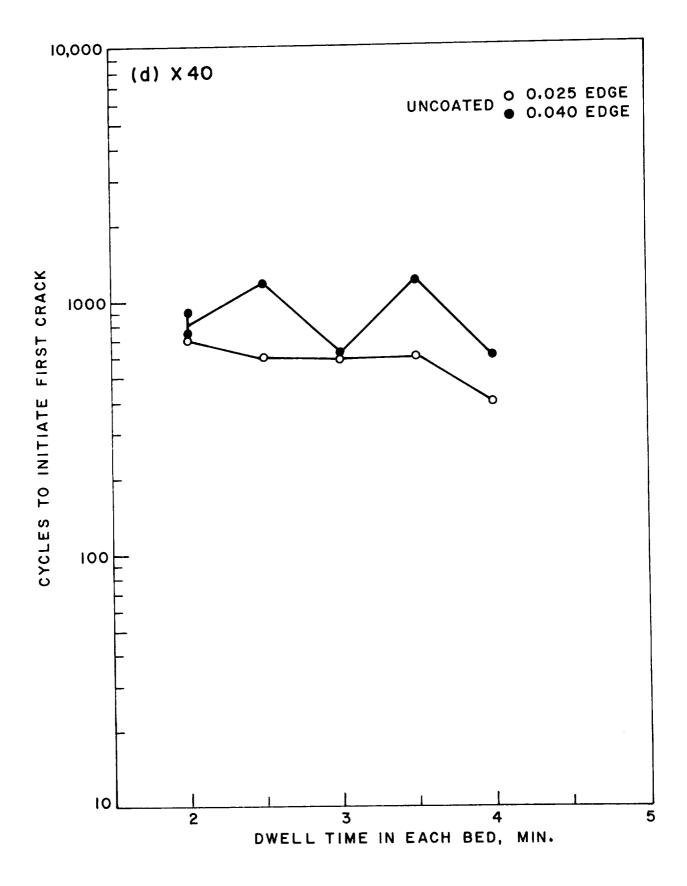


Fig. 17(d) - Thermal Cycles to Initiate the First Crack in X-40 Test Specimens in Either Test Edge under Test Conditions A to F.

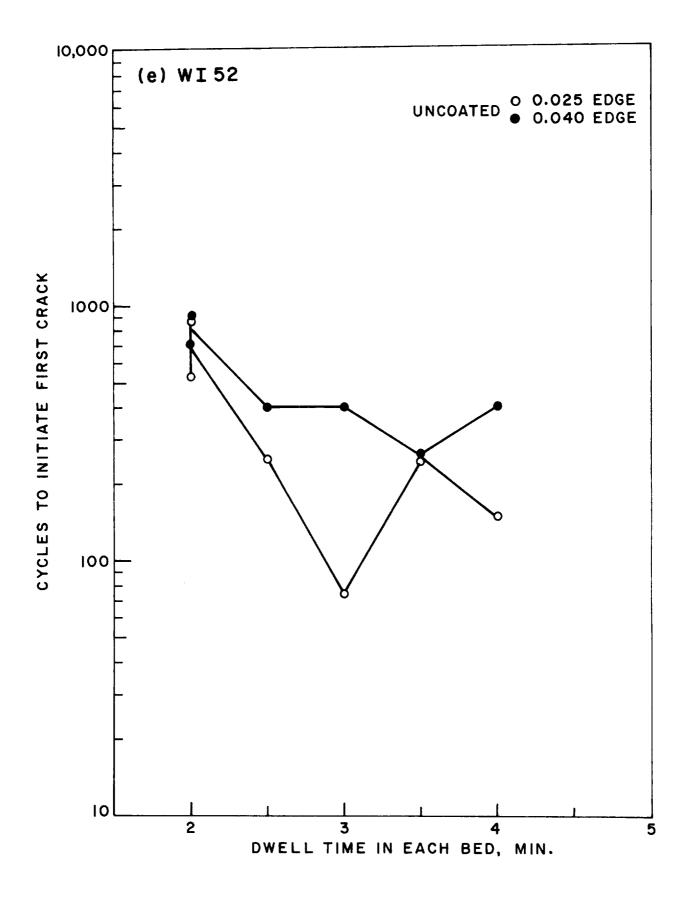


Fig. 17(e) - Thermal Cycles to Initiate the First Crack in WI-52 Test Specimens in Either Test Edge under Test Conditions A to F.

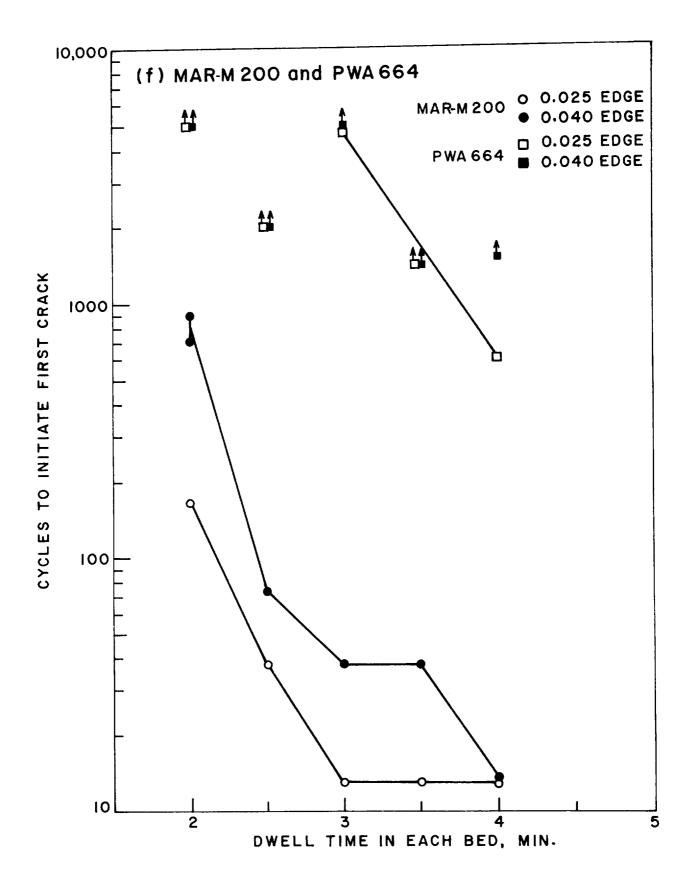


Fig. 17(f) - Thermal Cycles to Initiate the First Crack in MAR-M 200 and PWA 664 Test Specimens in Either Test Edge under Test Conditions A to F.

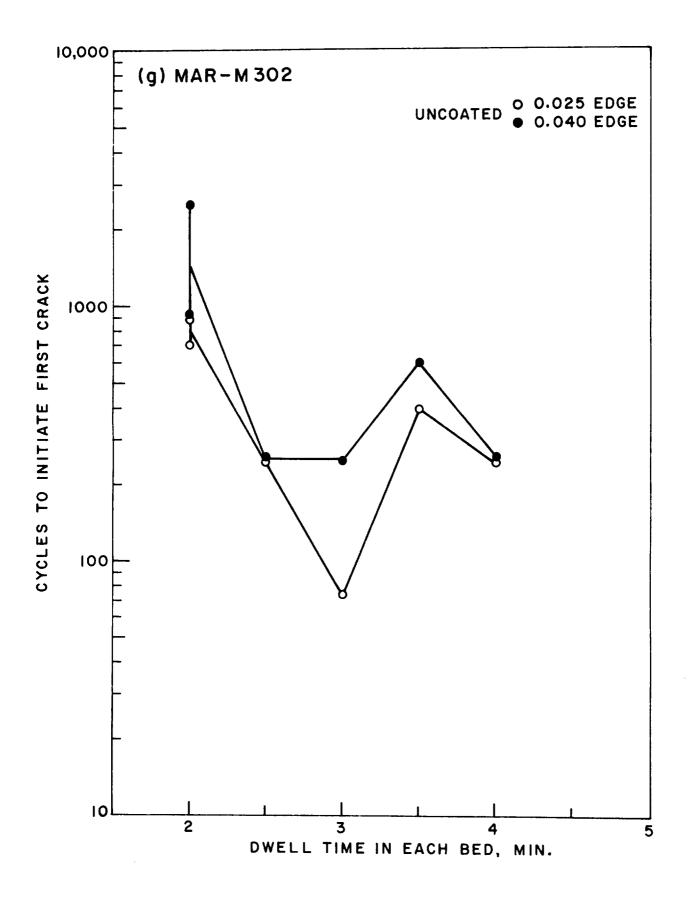


Fig. 17(g) - Thermal Cycles to Initiate the First Crack in MAR-M 302 Test Specimens in Either Test Edge under Test Conditions A to F.

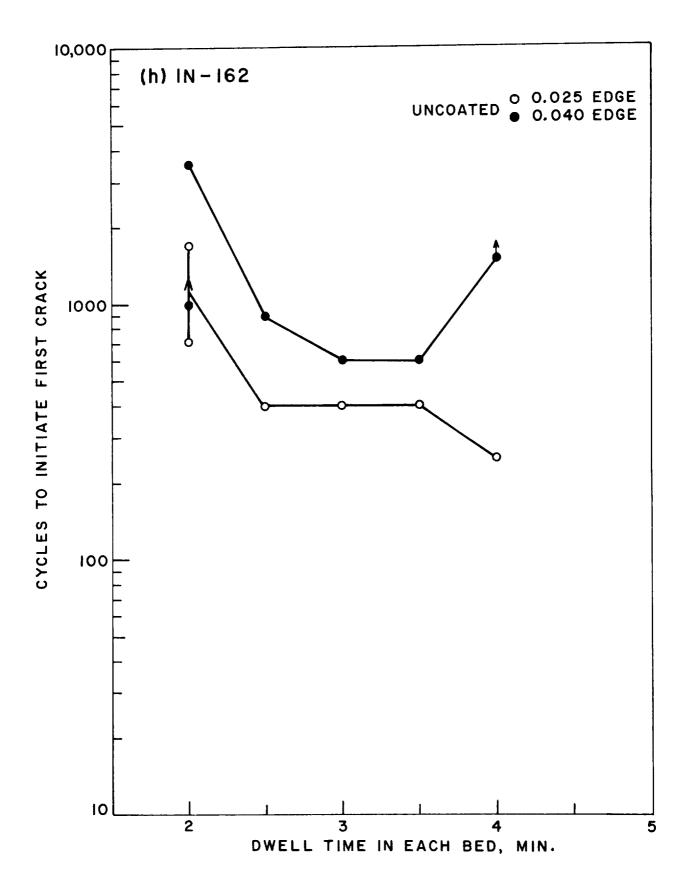


Fig. 17(h) - Thermal Cycles to Initiate the First Crack in IN-162 Test Specimens in Either Test Edge under Test Conditions A to F.

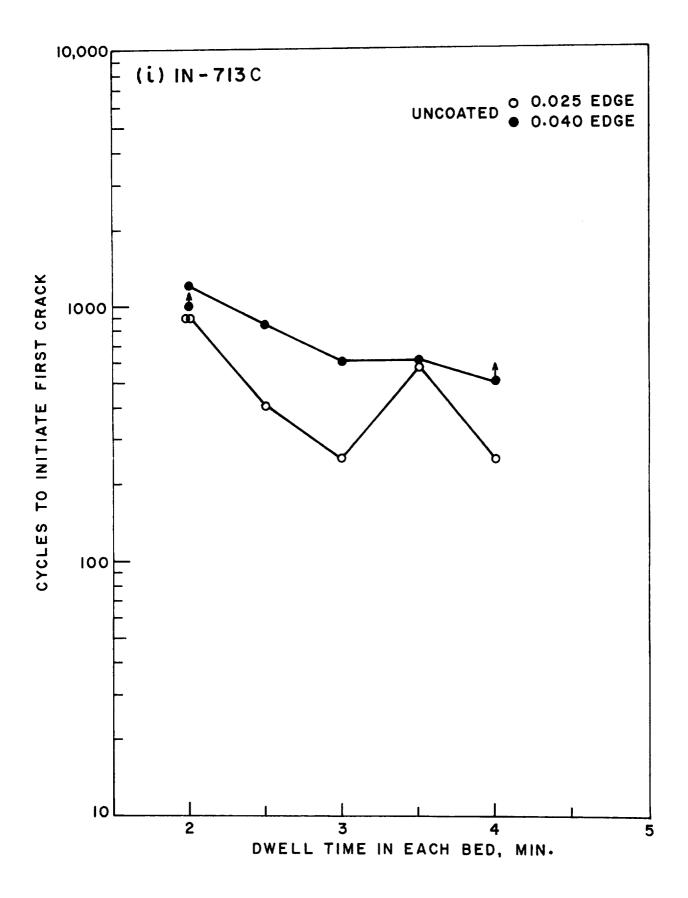


Fig. 17(i) - Thermal Cycles to Initiate the First Crack in IN-713C Test Specimens in Either Test Edge under Test Conditions A to F.

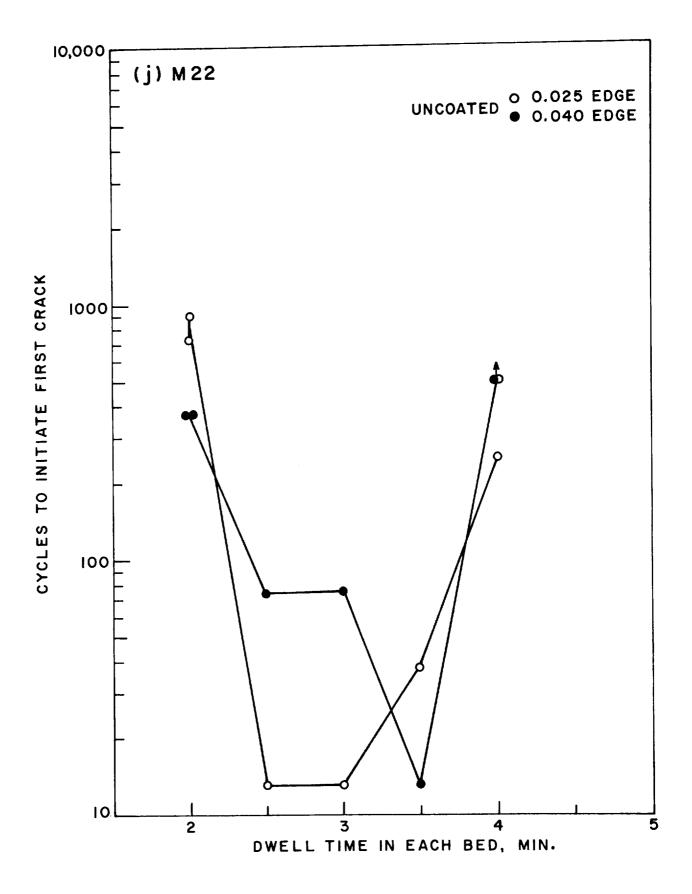


Fig. 17(j) - Thermal Cycles to Initiate the First Crack in M22 Test Specimens in Either Test Edge under Test Conditions A to F.

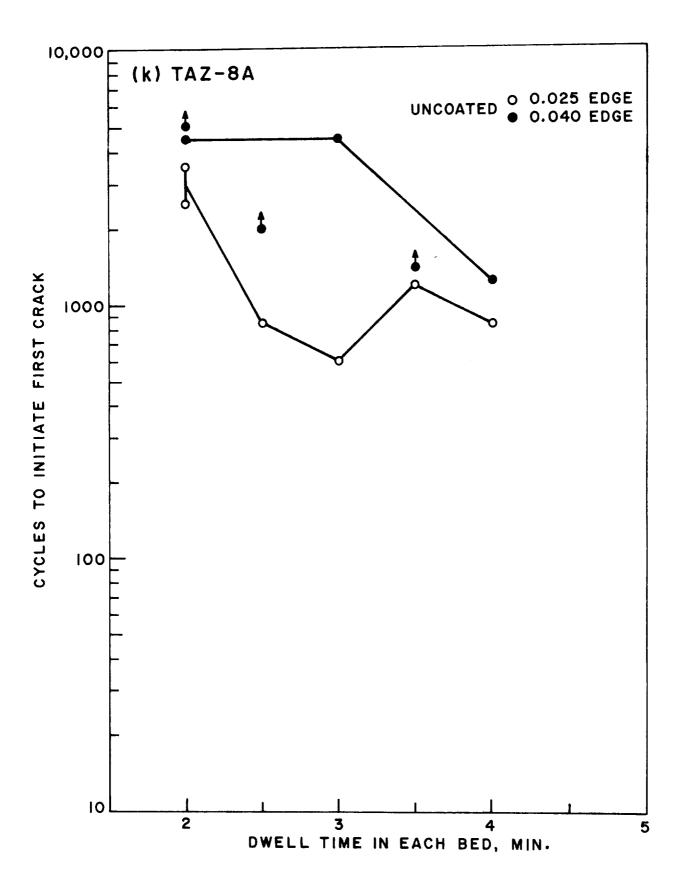


Fig. 17(k) - Thermal Cycles to Initiate the First Crack in TAZ-8A Test Specimens in Either Test Edge under Test Conditions A to F.

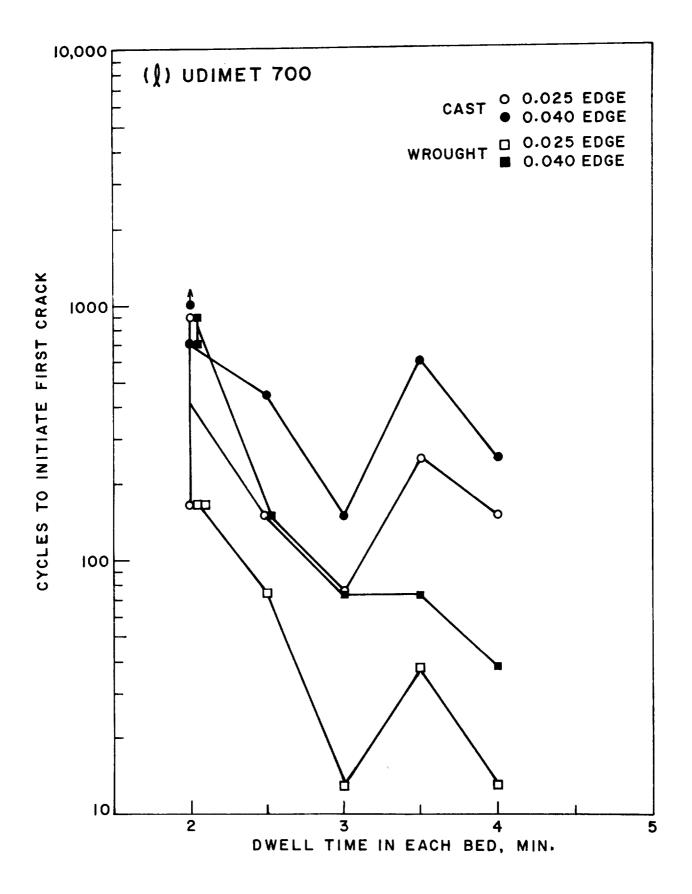
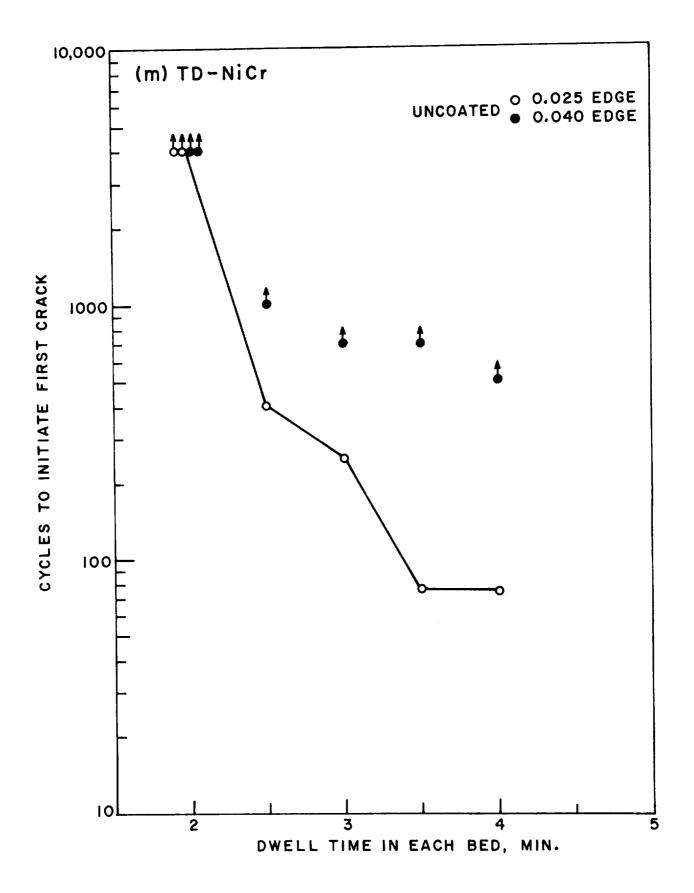
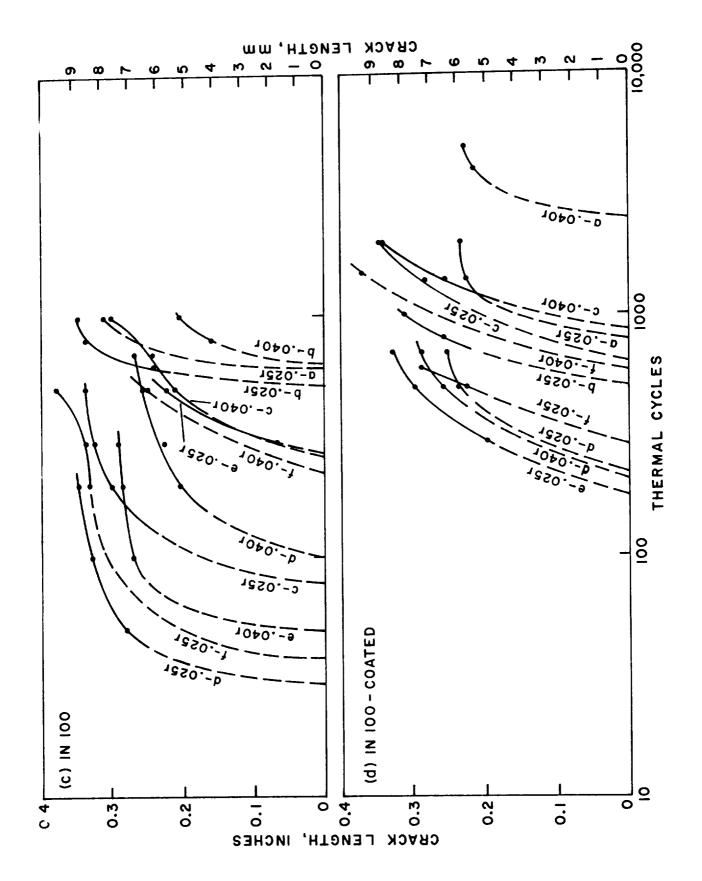
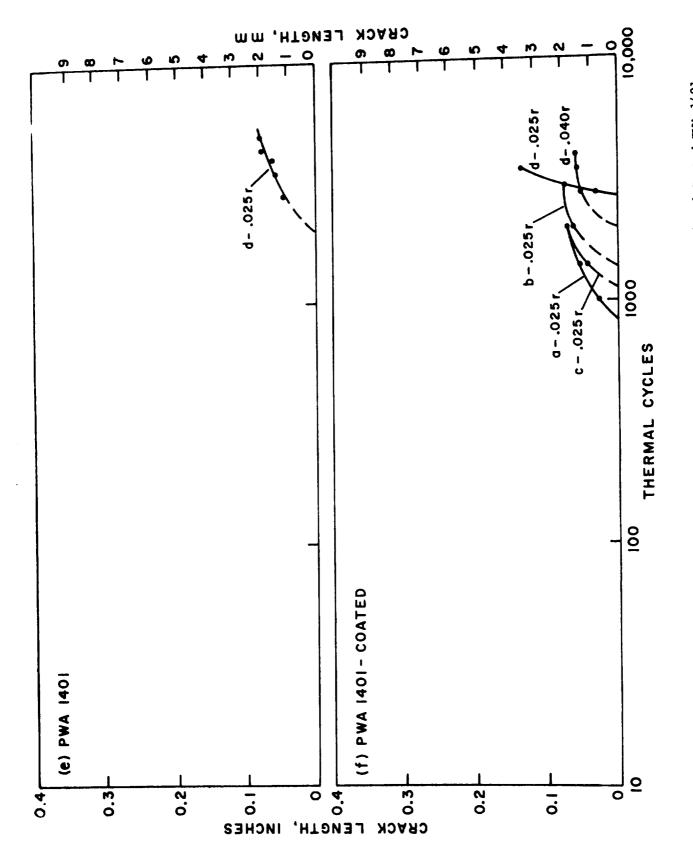
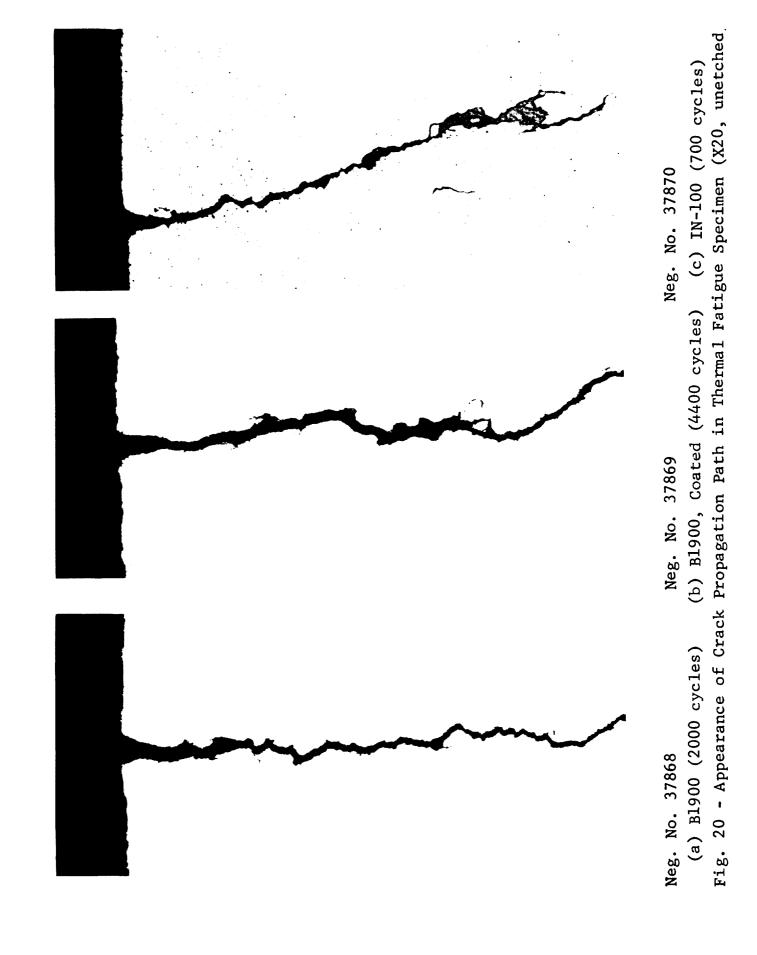
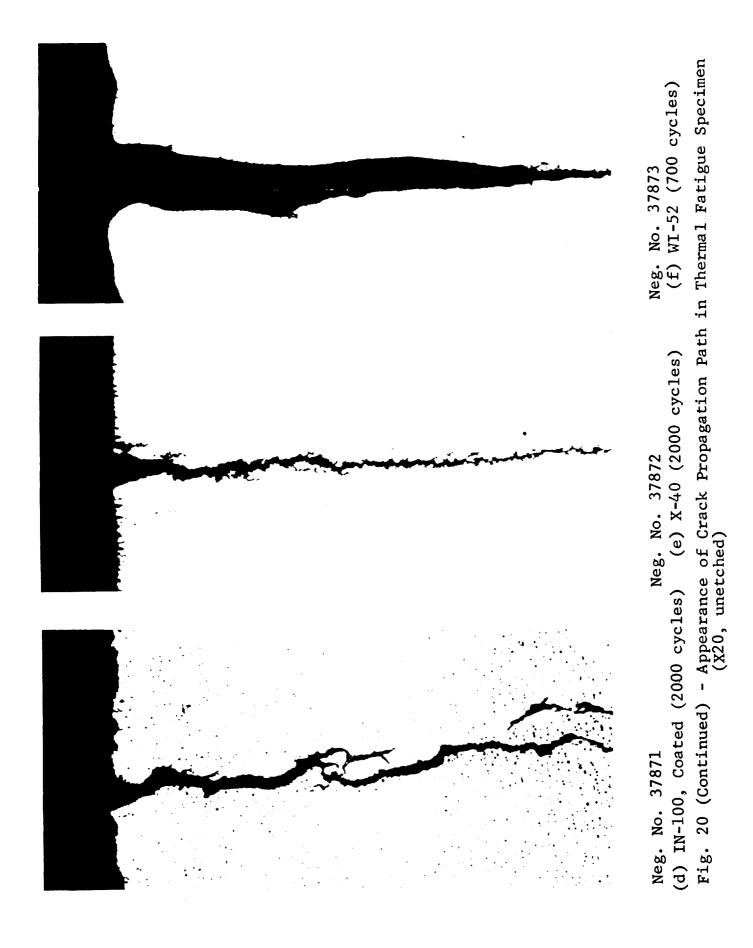
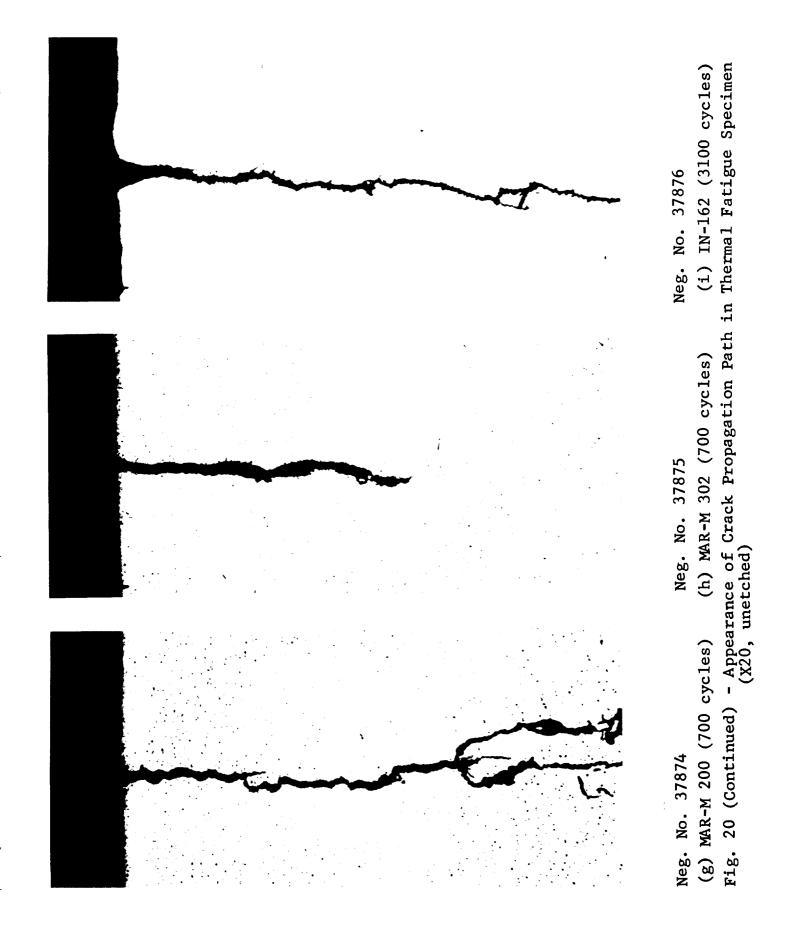
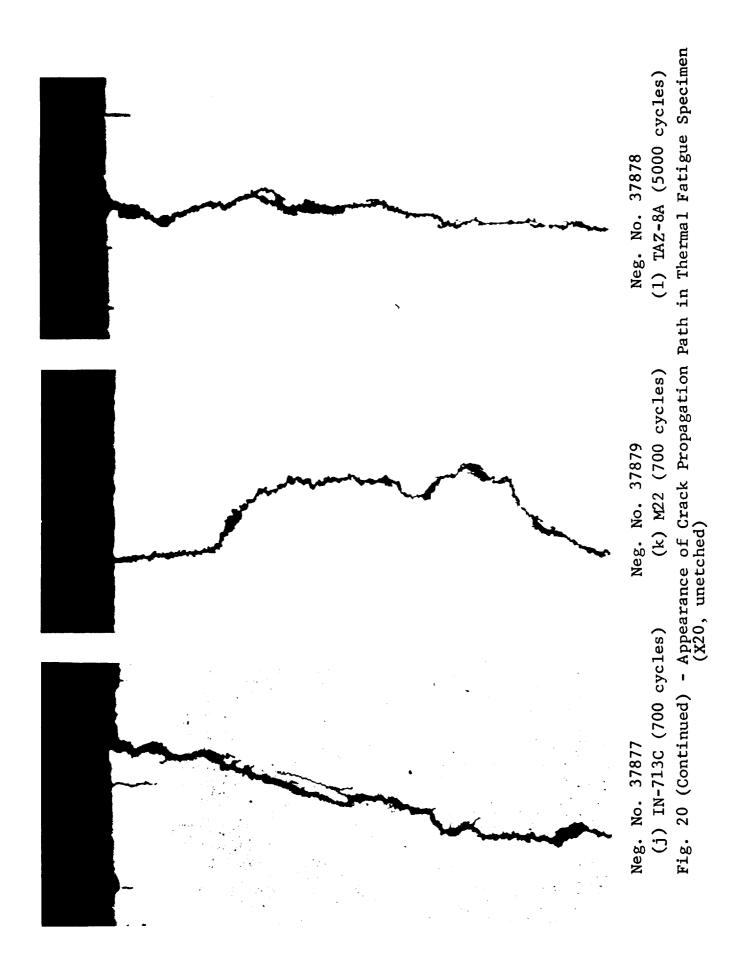


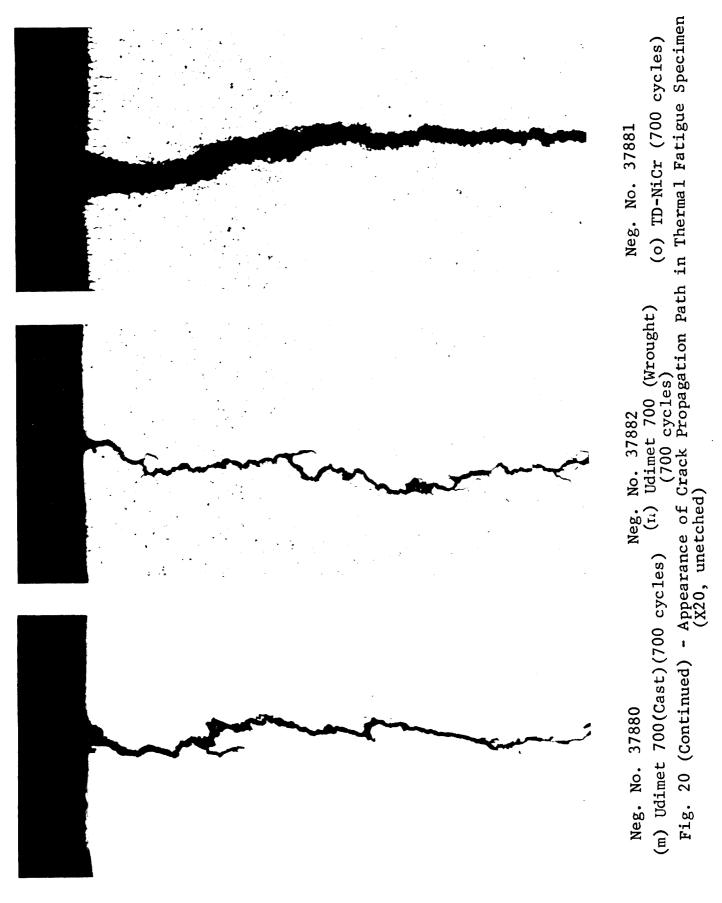
Fig. 17(1) - Thermal Cycles to Initiate the First Crack in Udimet 700 Test Specimens in Either Test Edge under Test Conditions A to F.

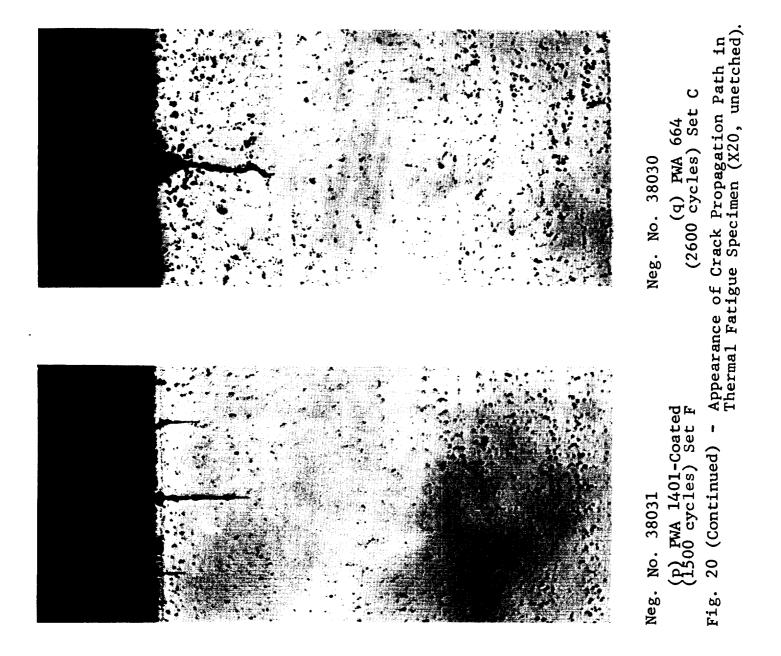





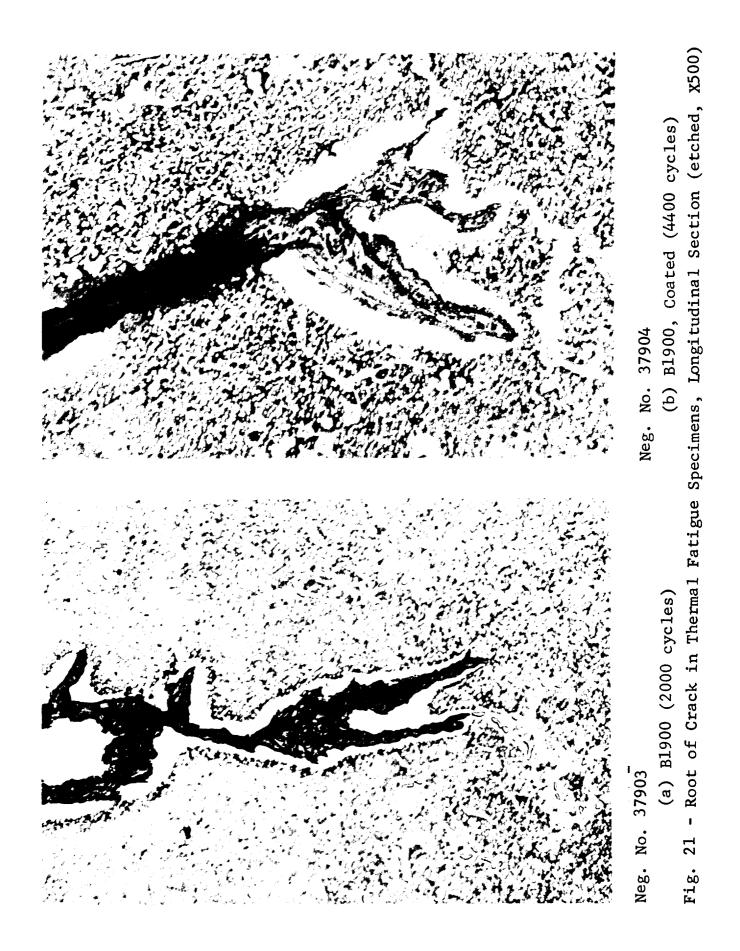

Fig. 17(m) - Thermal Cycles to Initiate the First Crack in TD-NiCr Test Specimens in Either Test Edge under Test Conditions A to F.

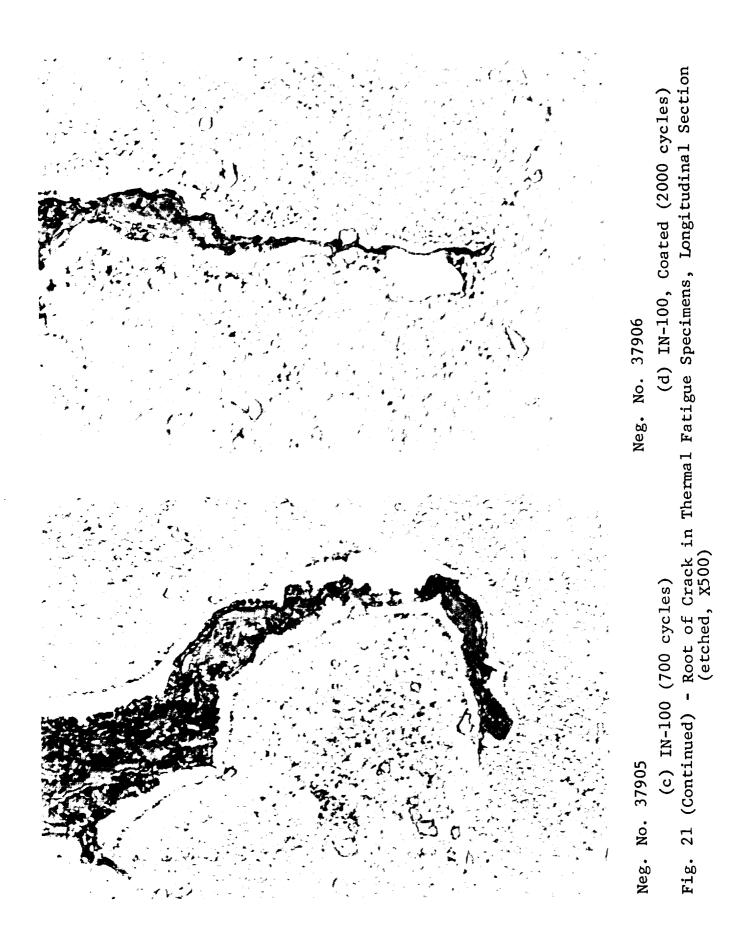


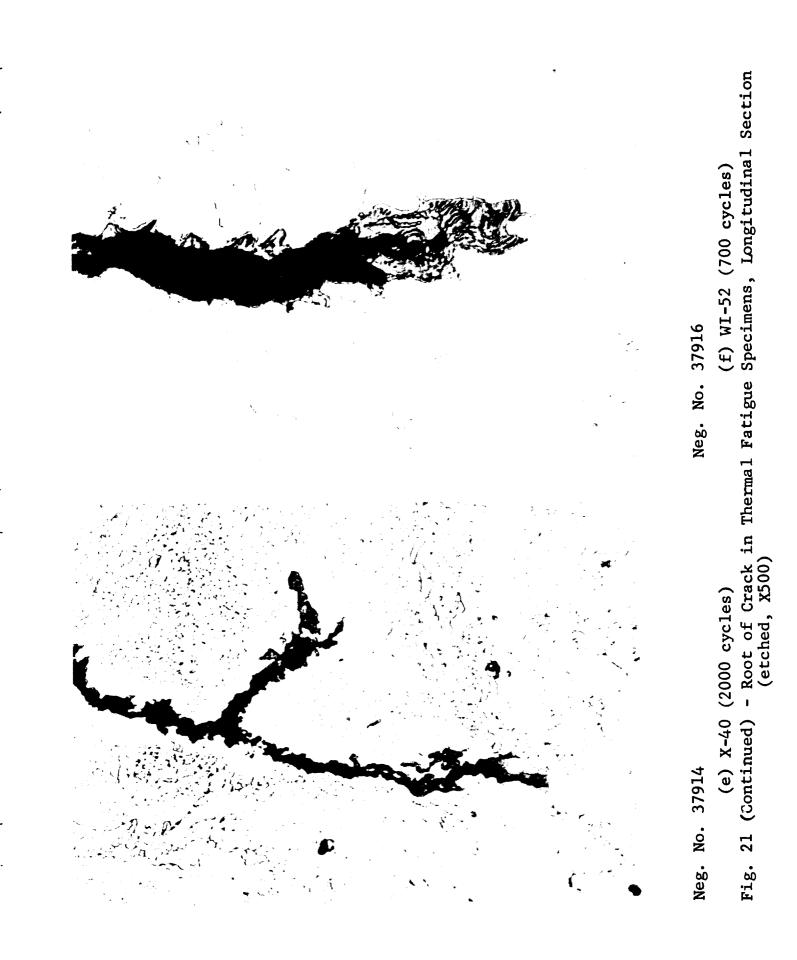


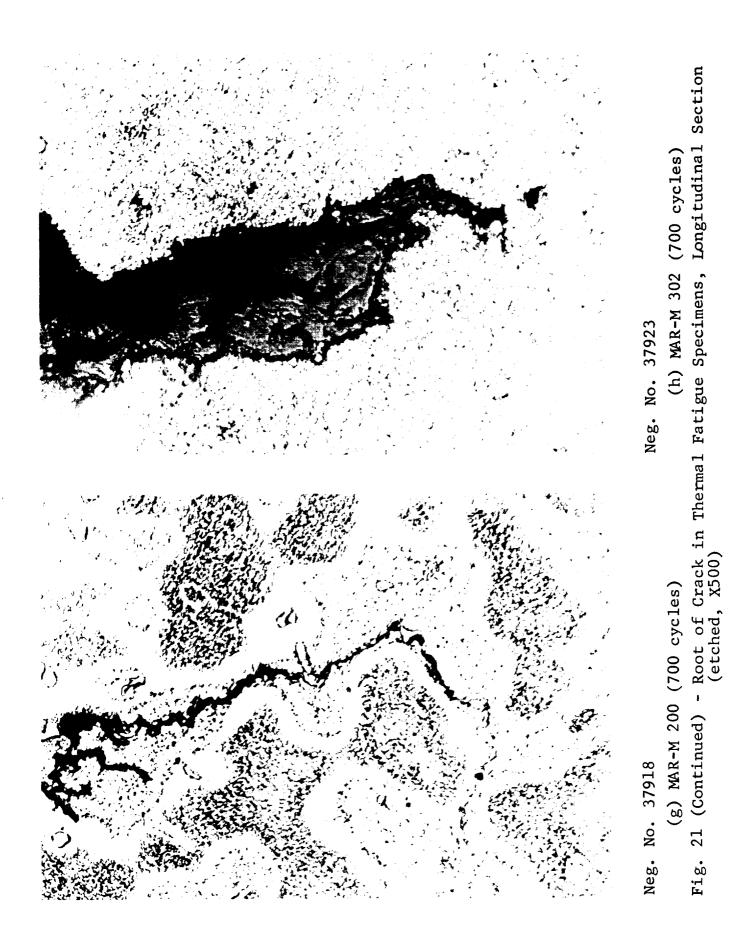


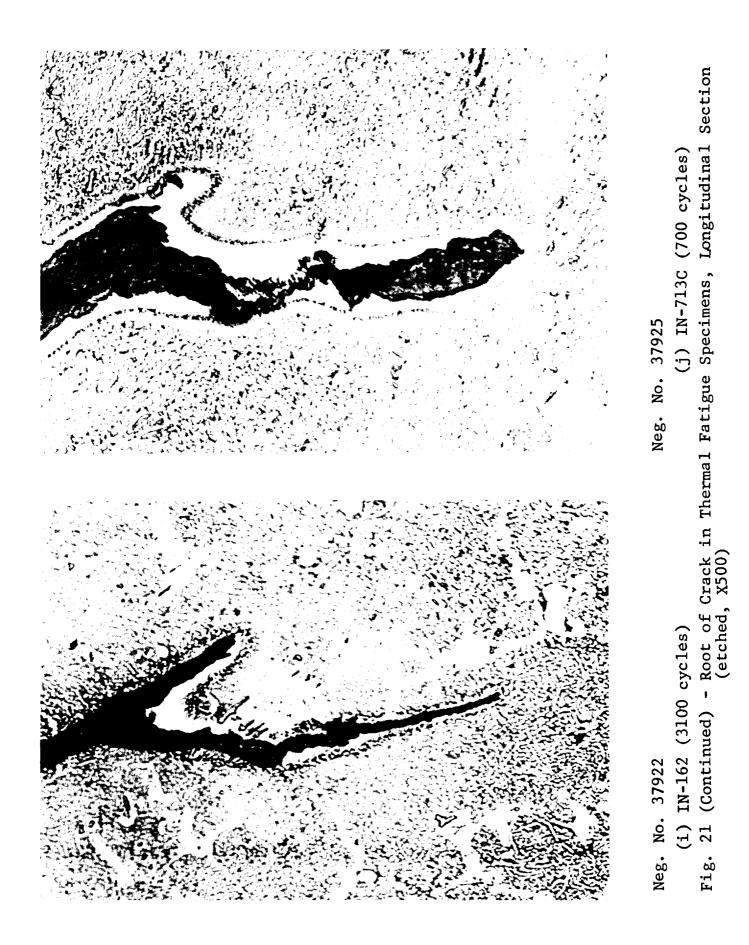


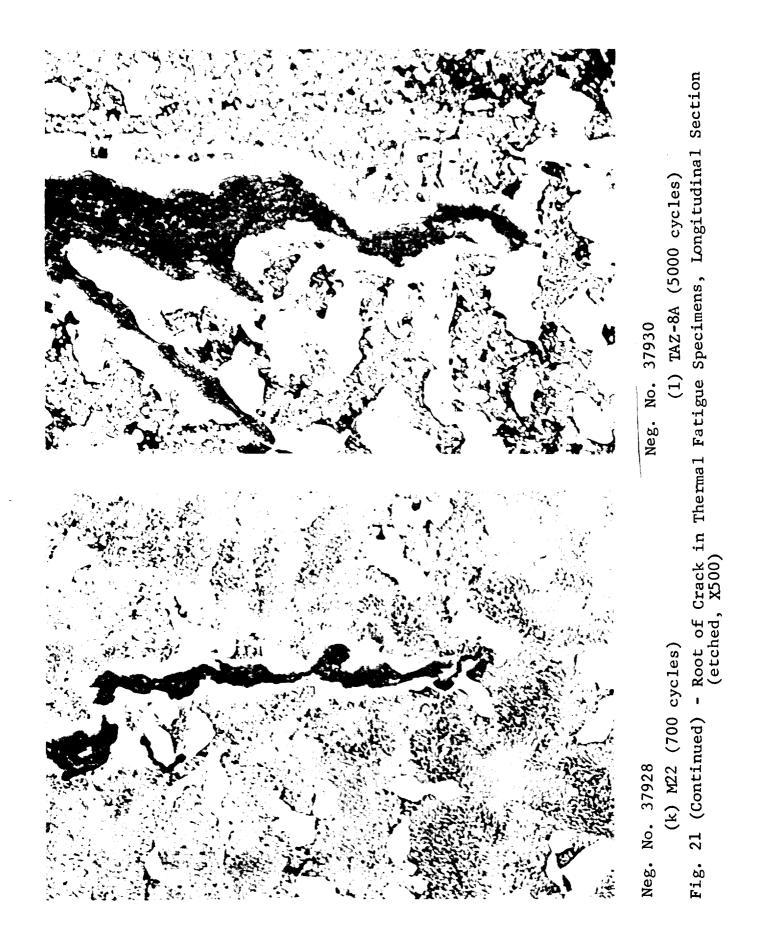


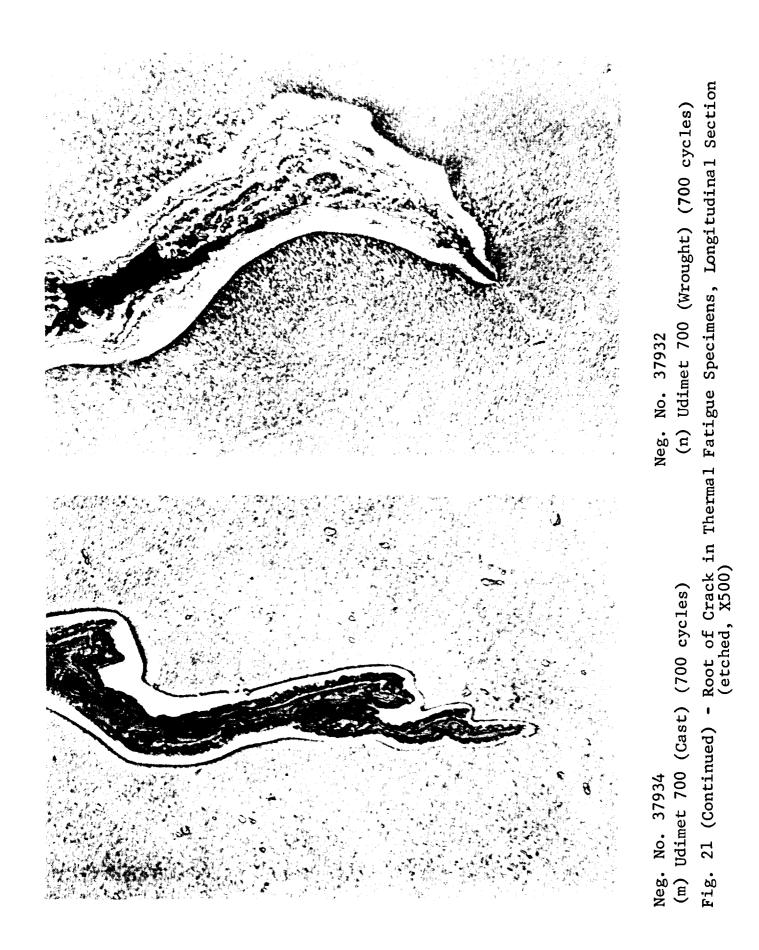


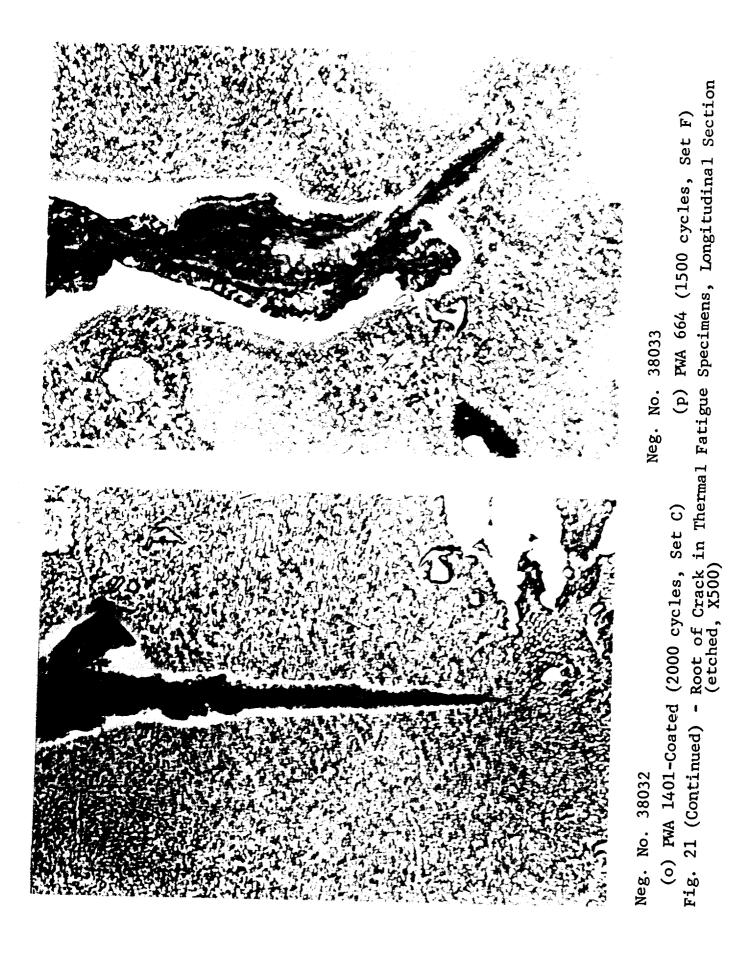


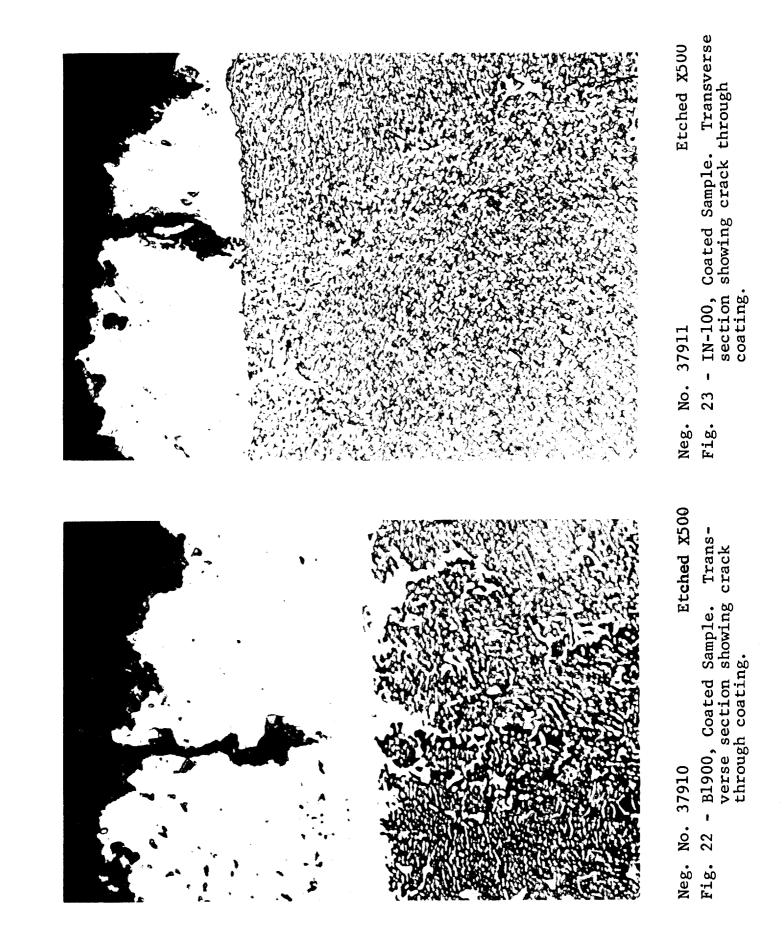


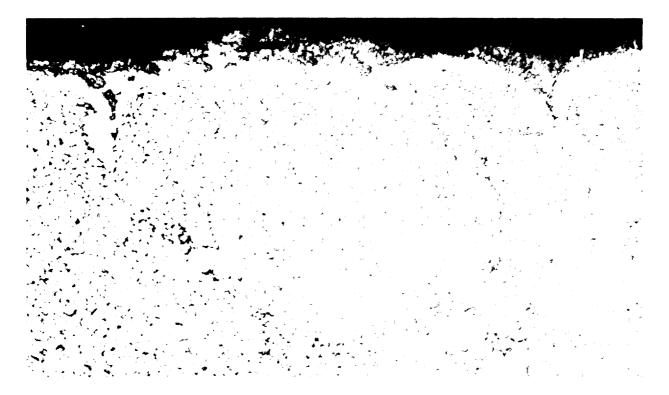


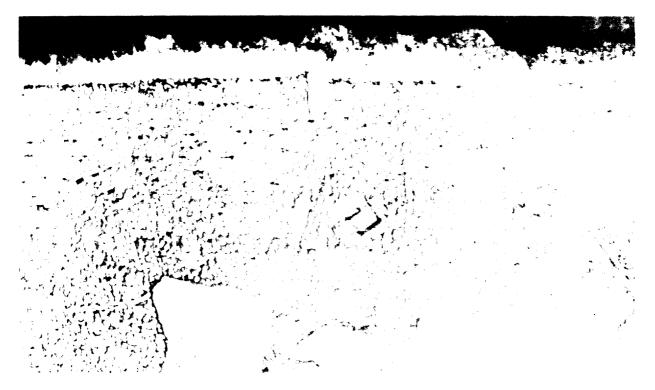






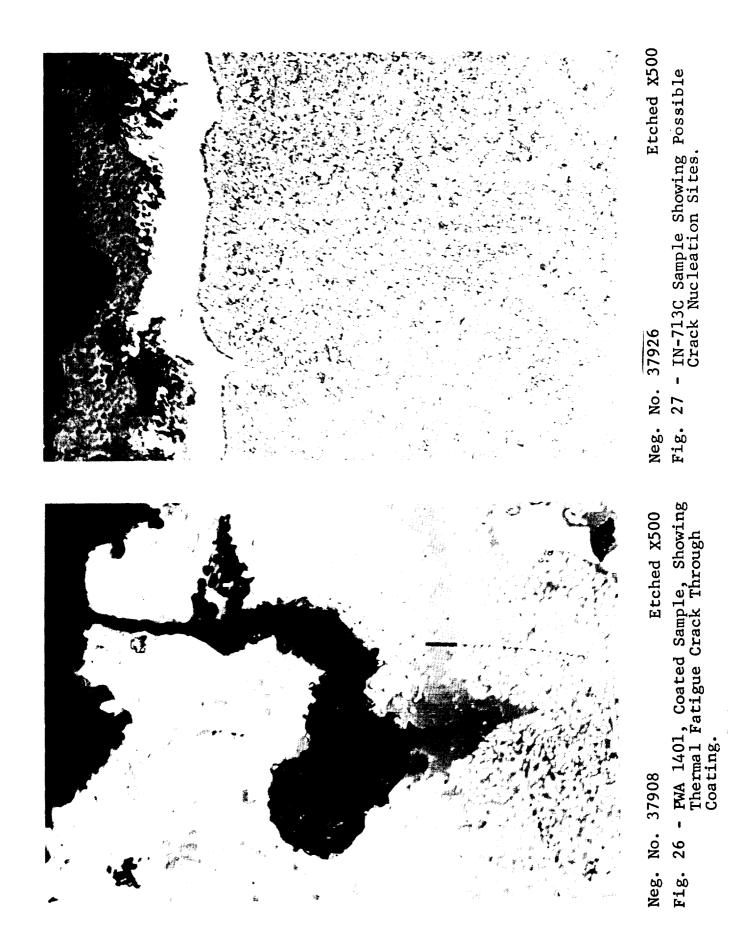


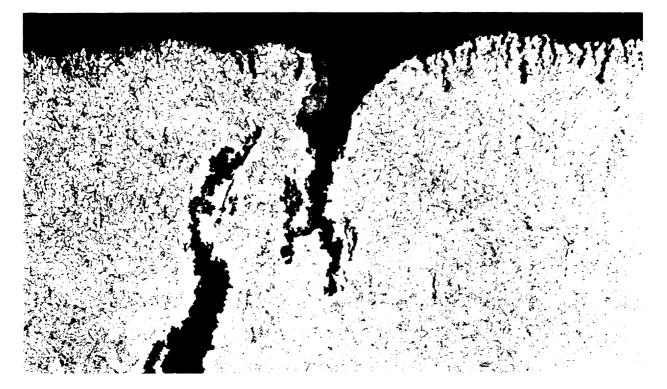




Neg. No. 37913

Etched X500


Fig. 24 - IN-100, Transverse Section Showing Possible Crack Nucleation Points.



Neg. No. 37929

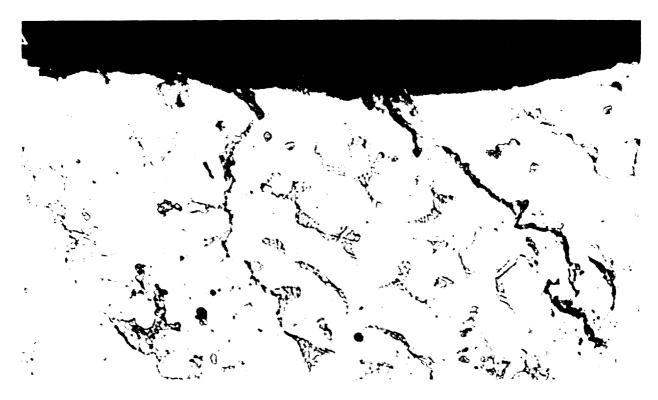
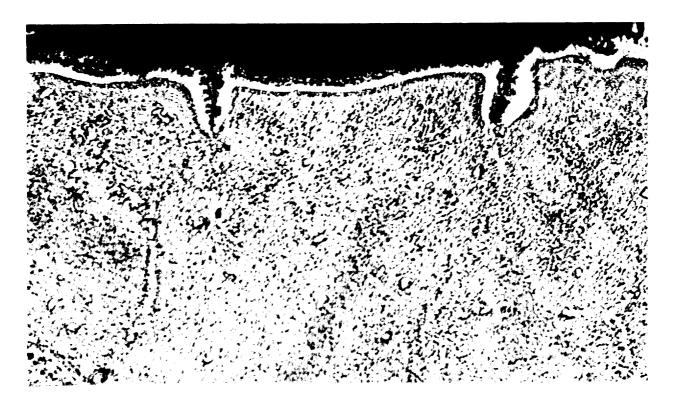
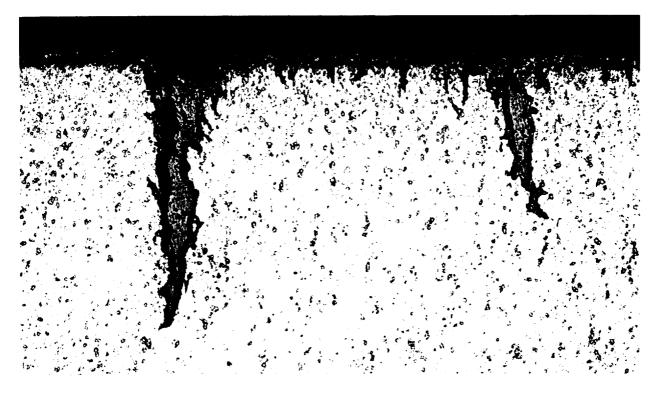

Etched X500

Fig. 25 - PWA 1401, Transverse Section Showing a Possible Crack Nucleation Point.


Neg. No. 37915Etched X125Fig. 28 - X-40 Sample Showing Early Stages of Crack Propagation.

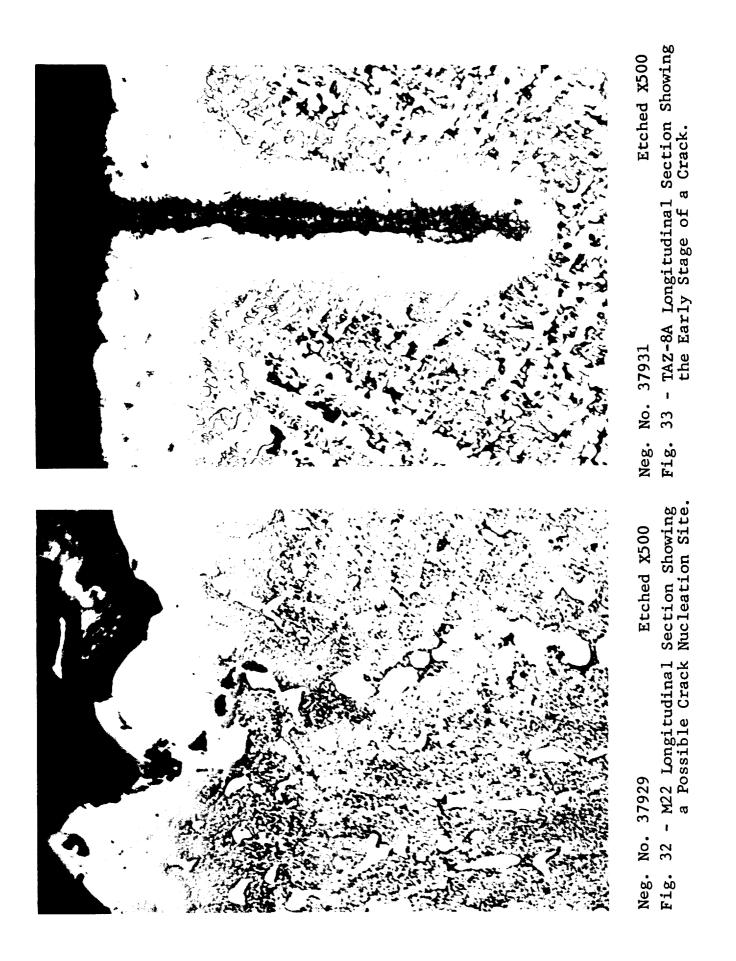
Neg. No. 37917

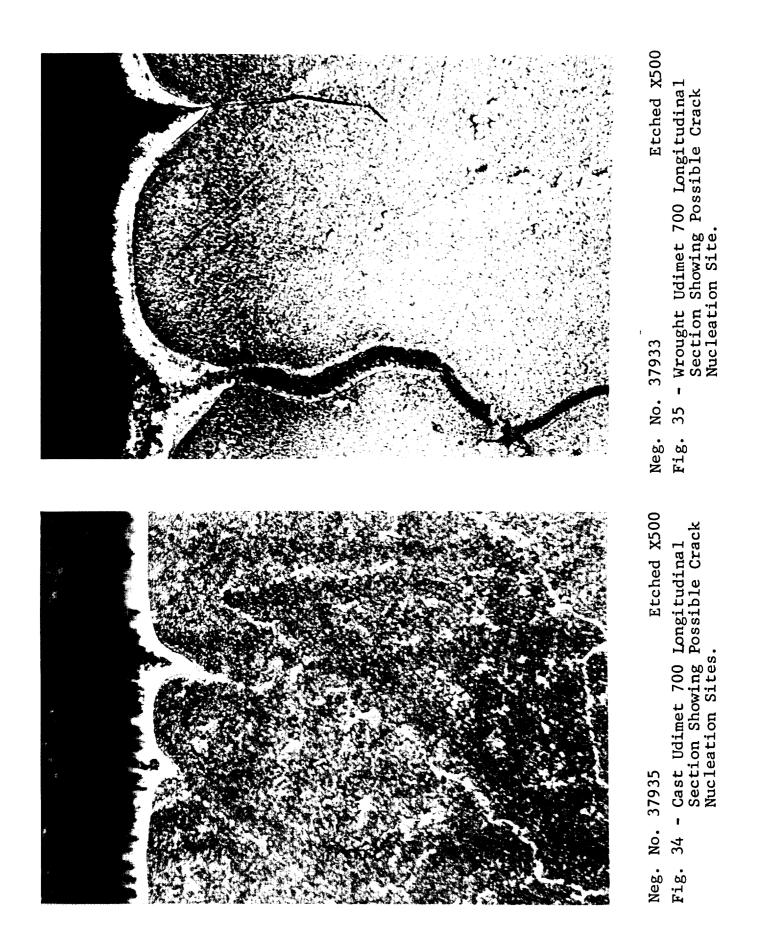
Etched X500


Fig. 29 - WI-52 Longitudinal Section Showing Possible Crack Nucleation Sites.

Neg. No. 37919

Etched X500

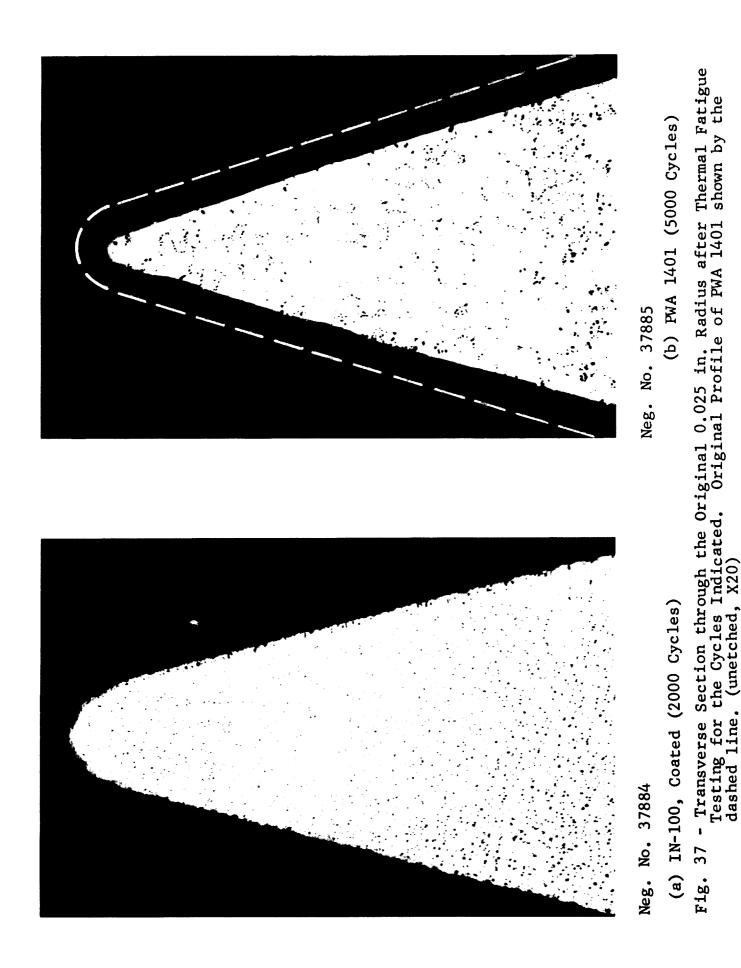

Fig. 30 - MAR-M 200 Longitudinal Section Showing Possible Crack Nucleation Sites.

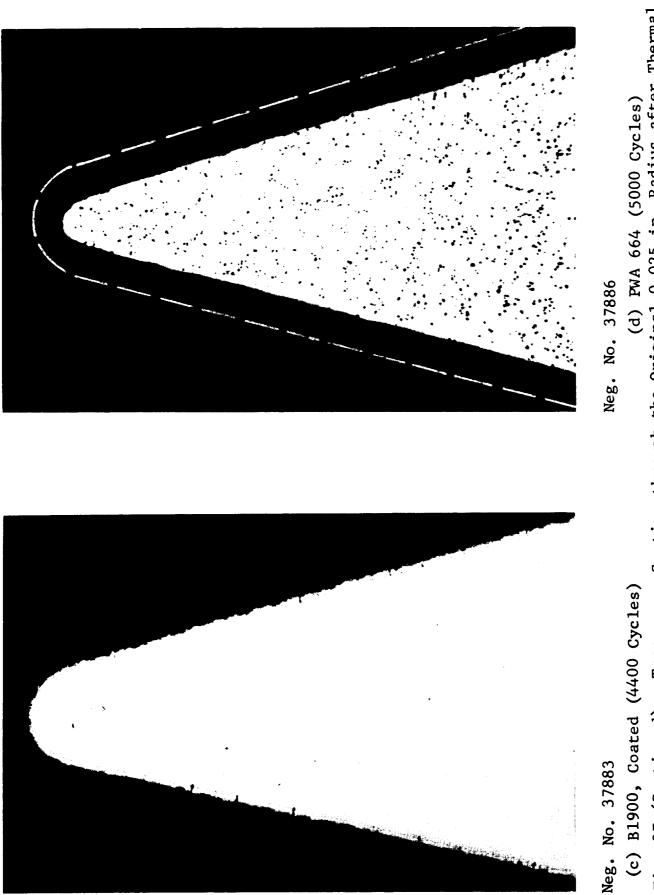


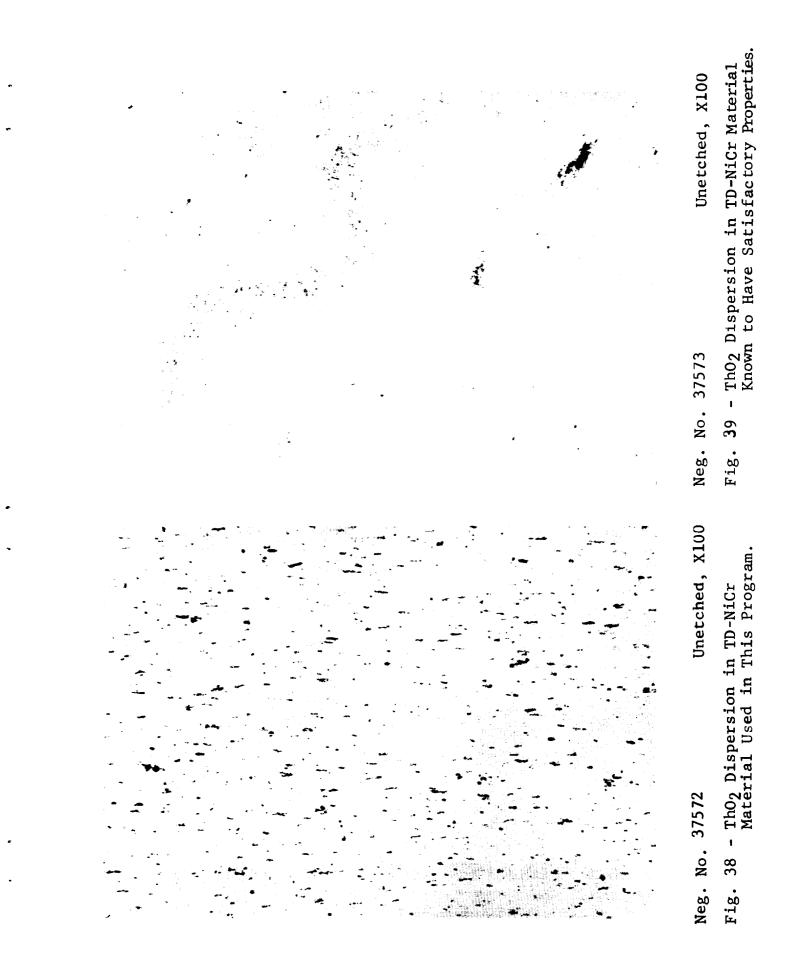
Neg. No. 37921

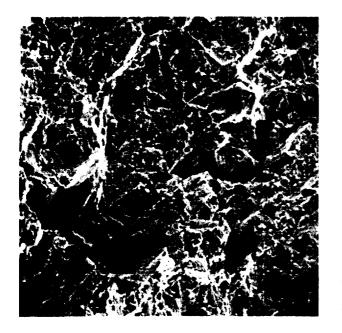
Etched X125

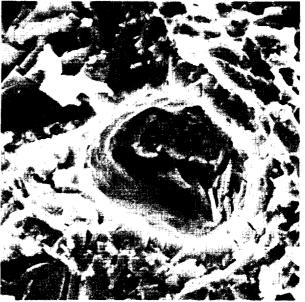
Fig. 31 - MAR-M 302 Longitudinal Section Showing Early Stages of Crack Propagation.






Neg. No. 38034


Etched X250


Fig. 36 - PWA 664 Longitudinal Section Showing Subsurface Porosity as Possible Crack Nucleation Site.

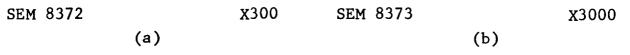
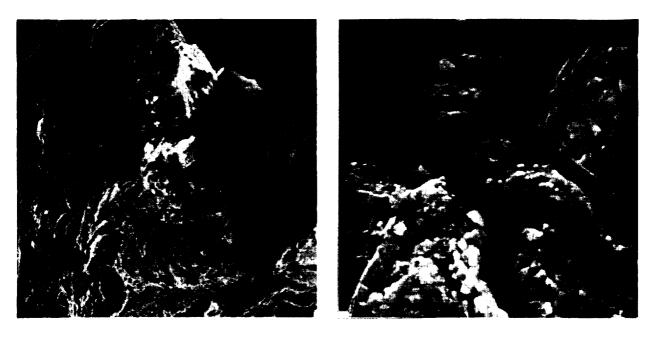



Fig. 40 - Appearance of Thermal Fatigue Fracture of IN-100 in the SEM.

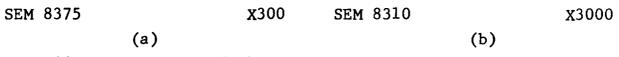
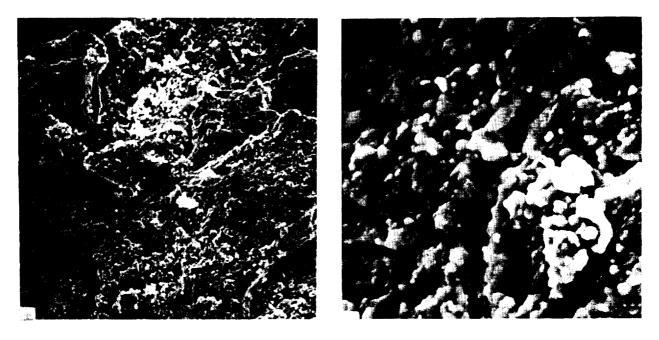
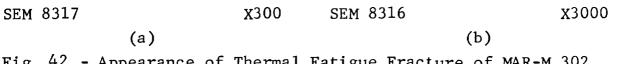
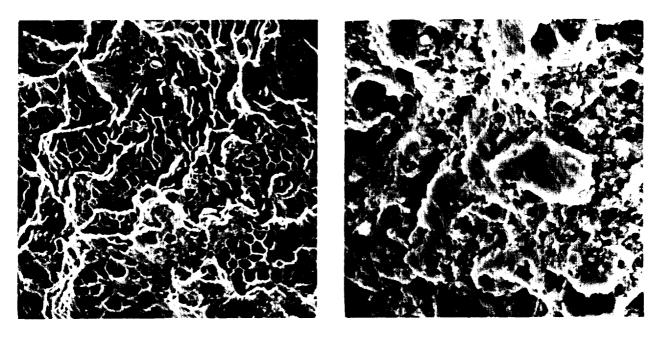
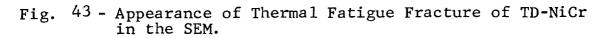
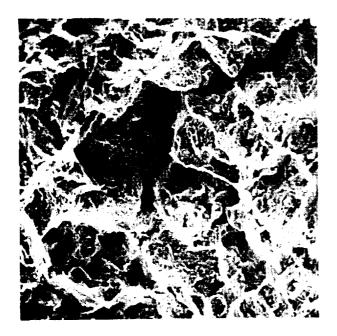
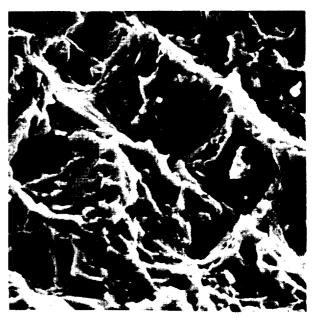
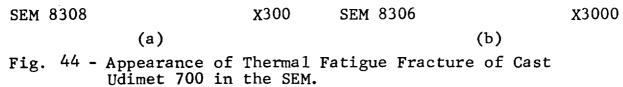
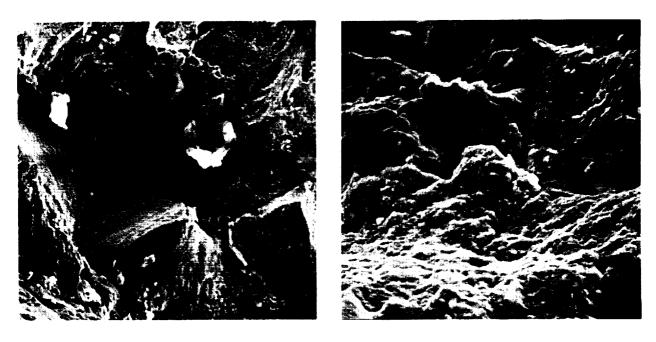



Fig. 41 - Appearance of Thermal Fatigue Fracture of MAR-M 200 in the SEM.


Fig. 42 - Appearance of Thermal Fatigue Fracture of MAR-M 302 in the SEM.





:

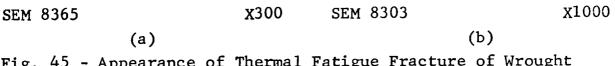


Fig. 45 - Appearance of Thermal Fatigue Fracture of Wrought Udimet 700 in the SEM.

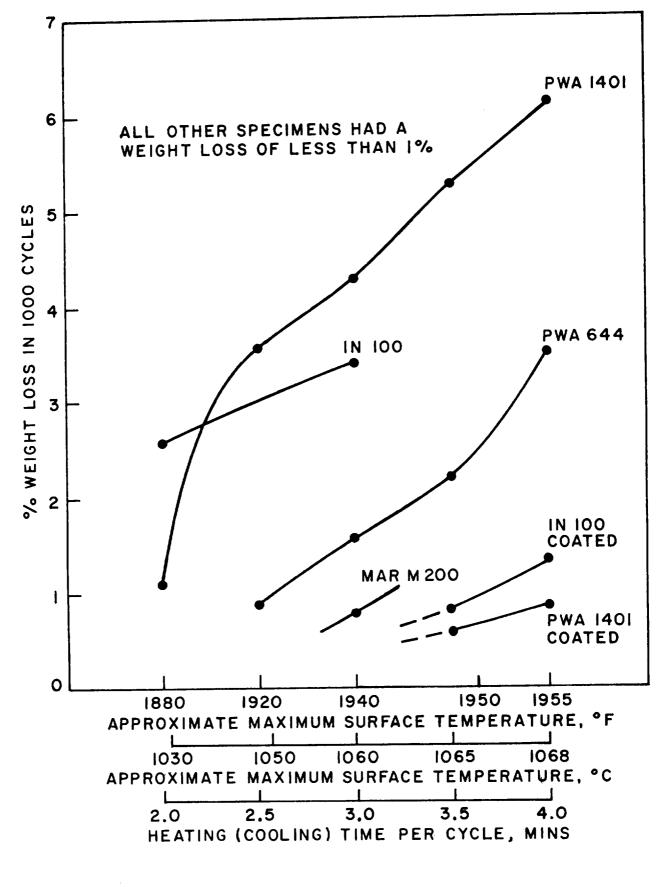


Fig. 46 - Weight Loss for 1000-Cycle Exposure. Bed temperatures, 1990°F and 600°F. ..