6,528 research outputs found
HAT-P-30b: A Transiting Hot Jupiter on a Highly Oblique Orbit
We report the discovery of HAT-P-30b, a transiting exoplanet orbiting the V = 10.419 dwarf star GSC 0208-00722. The planet has a period P = 2.810595 ± 0.000005 days, transit epoch Tc = 2455456.46561 ± 0.00037 (BJD), and transit duration 0.0887 ± 0.0015 days. The host star has a mass of 1.24 ± 0.04 M_â, radius of 1.21 ± 0.05 R_â, effective temperature of 6304 ± 88 K, and metallicity [Fe/H] = +0.13 ± 0.08. The planetary companion has a mass of 0.711 ± 0.028 M J and radius of 1.340 ± 0.065 R J yielding a mean density of 0.37 ± 0.05 g cm^(â3). We also present radial velocity measurements that were obtained throughout a transit that exhibit the Rossiter-McLaughlin effect. By modeling this effect, we measure an angle of λ = 73.°5 ± 9.°0 between the sky projections of the planet's orbit normal and the star's spin axis. HAT-P-30b represents another example of a close-in planet on a highly tilted orbit, and conforms to the previously noted pattern that tilted orbits are more common around stars with T_(eff*) âł 6250 K
Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements
We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_â, a radius of 1.1 R_â, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_â, a radius of 2.00 ± 0.10 R_â, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_â, a radius of 5.49 ± 0.26 R_â, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_â, a radius of 6.98 ± 0.33 R_â and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs
Geology and Structure of the Rough Creek Area, Western Kentucky
The Rough Creek area is a rectangular area about 113 mi east to west and 35 mi north to south encompassing about 3,900 mi2 in west-central and western Kentucky. The Ohio River delineates most of the western border with Illinois and locally also part of the northern border with Indiana. The northeast corner of the area is about 27 mi southwest of Louisville. The principal cities are Owensboro and Henderson.
The Precambrian basement has been penetrated in only two wells in western Kentucky at depths somewhat greater than 14,000 ft. Basement is projected to underlie much of the area at a depth of more than 25,000 ft, and perhaps locally even more than 30,000 ft, in this, the deepest part of the Illinois Basin. Rocks of all geologic ages from Cambrian to Quaternary, except those of Mesozoic age, are present within the Rough Creek area; Upper Cretaceous strata occur as close as 20 mi south of the southeastern corner, however. All Paleozoic rocks older than Early Mississippian are restricted to the subsurface, so that the exposed rocks are dominantly of Mississippian (Meramecian and Chesterian) and Pennsylvanian ages. Strata of the Fort Payne Formation (Osagean) are present locally in the Rough Creek Fault Zone. Also, rocks of Early Permian age have been identified in a graben in the fault zone. Although no Pleistocene ice sheets penetrated south of the Ohio River in the Rough Creek area, the river valley was a major sluiceway for glacial debris from the Wisconsinan ice sheet, so the valley is filled with outwash, and loess blown from the valley blankets the area adjacent on the south. Remnants of Tertiary and Quarternary stream terraces are present in the Ohio and Green River Valleys, and thick lacustrine deposits covered by younger alluvium fill the larger stream valleys tributary to the Ohio River.
The Rough Creek area is in the southern part of the Illinois Basin, and the principal structural features of the region that are present within or close to the study area, and at times influenced depositional patterns during the Paleozoic, include the Rough CreekâShawneetown Fault System, the MoormanâEagle Valley Syncline, the Pennyrile Fault System, and faults of the Illinois-Kentucky Fluorspar District. The Rough CreekâShawneetown Fault System, which extends from western Kentucky into southeastern Illinois, where it is called the Shawneetown Fault Zone, is defined on its northern and western margins in Illinois by a southward-dipping, high-angle reverse fault with as much as 3,500 ft of reverse displacement. The frontal fault extends into Kentucky, but the degree of displacement is less than in Illinois; eastward along the structure, the frontal fault is broken into several long, arcuate segments by high-angle normal faults, and is displaced southward until it is no longer the frontal fault. In Kentucky, the Rough Creek zone is characterized by many steeply dipping fault blocks bounded by high-angle normal and reverse faults. The MoormanâEagle Valley Syncline lies immediately south of the Rough CreekâShawneetown Fault System, and that structure forms its steep northern and western limbs; the Kentucky part is the Moorman Syncline. The Pennyrile Fault System defines the gentle southern limb of the Moorman Syncline. In the deepest part of the composite syncline, which is close to its northern limb, structural relief on the Precambrian basement is more than 30,000 ft. The MoormanâEagle Valley Syncline overlies the Rough Creek Graben in the basement.
The Pennyrile Fault System, which lies mostly south of the Rough Creek area, is a broad feature composed of three branches of east- to northeast-trending, high-angle normal faults in an en echelon pattern that break the gently dipping strata into a series of fault blocks. Displacement on the faults generally increases to the west toward the junction of the fault system with faults of the Illinois-Kentucky Fluorspar District. The Pennyrile overlies the southern margin of the Rough Creek Graben, a structural feature in basement rocks
Nonlocalized modulation of periodic reaction diffusion waves: The Whitham equation
In a companion paper, we established nonlinear stability with detailed
diffusive rates of decay of spectrally stable periodic traveling-wave solutions
of reaction diffusion systems under small perturbations consisting of a
nonlocalized modulation plus a localized perturbation. Here, we determine
time-asymptotic behavior under such perturbations, showing that solutions
consist to leading order of a modulation whose parameter evolution is governed
by an associated Whitham averaged equation
The California-Kepler Survey. IV. Metal-rich Stars Host a Greater Diversity of Planets
Probing the connection between a star's metallicity and the presence and
properties of any associated planets offers an observational link between
conditions during the epoch of planet formation and mature planetary systems.
We explore this connection by analyzing the metallicities of Kepler target
stars and the subset of stars found to host transiting planets. After
correcting for survey incompleteness, we measure planet occurrence: the number
of planets per 100 stars with a given metallicity . Planet occurrence
correlates with metallicity for some, but not all, planet sizes and orbital
periods. For warm super-Earths having days and , planet occurrence is nearly constant over metallicities spanning
0.4 dex to +0.4 dex. We find 20 warm super-Earths per 100 stars, regardless
of metallicity. In contrast, the occurrence of warm sub-Neptunes () doubles over that same metallicity interval, from 20 to 40
planets per 100 stars. We model the distribution of planets as , where characterizes the strength of any metallicity
correlation. This correlation steepens with decreasing orbital period and
increasing planet size. For warm super-Earths ,
while for hot Jupiters . High metallicities in
protoplanetary disks may increase the mass of the largest rocky cores or the
speed at which they are assembled, enhancing the production of planets larger
than 1.7 . The association between high metallicity and short-period
planets may reflect disk density profiles that facilitate the inward migration
of solids or higher rates of planet-planet scattering.Comment: 32 pages, 15 figures, 9 tables, accepted for publication in The
Astronomical Journa
Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-14b is Retrograde
We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of λ = â4.9 ± 11.9 deg. In contrast, HAT-P-14b is retrograde, with λ = 189.1 ± 5.1 deg. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star
Recent physical and sexual violence against adults with severe mental illness: a systematic review and meta-analysis
People with severe mental illness (SMI) have high prevalence of lifetime victimization, but little is known about the extent and risk of recent domestic/sexual violence. The objective was to synthesize evidence on prevalence, odds, and risk factors for recent violence against people with SMI, with a focus on domestic and sexual violence. Relevant studies were identified through literature searches in Medline, Psychinf, Embase (for studies published in 2010â2015), and through existing systematic reviews (for studies published in 2000â2014). The review included 30 studies (with 16 140 SMI participants), including six on domestic violence and 11 on sexual violence. Prevalence of recent domestic violence ranged from 15â22% among women and from 4â10% among men/mixed samples; with little evidence on risk compared with the general population. Median prevalence of sexual violence was 9.9% (IQRâ=â5.9â18.1%) in women and 3.1% (IQRâ=â2.5â6.7%) in men; with 6-fold higher odds of victimization compared with the general population. There was little evidence on risk factors for domestic or sexual violence. In conclusion, people with SMI have a high prevalence of recent domestic and sexual violence, but little is known about risk factors for these violence types, or extent of domestic violence victimization compared to the general population
Effect of Interstage Bleed on Rotating Stall and Blade Vibration in a 13-stage Axial-flow Compressor in a Turbojet Engine
The compressor case of a 13-stage axial-flow compressor was modified to incorporate air-bleed systems over the fifth and tenth rotor stages. Rotating stall-exited rotor-blade vibrations were measured in the first and second stages at 60 and 68 percent of rated speed, respectively. Either the fifth- or the tenth-stage bleeds satisfactorily eliminated the peak vibratory stresses
LHS6343C: A Transiting Field Brown Dwarf Discovered by the Kepler Mission
We report the discovery of a brown dwarf that transits one member of the M+M
binary system LHS6343AB every 12.71 days. The transits were discovered using
photometric data from the Kelper public data release. The LHS6343 stellar
system was previously identified as a single high-proper-motion M dwarf. We use
high-contrast imaging to resolve the system into two low-mass stars with masses
0.45 Msun and 0.36 Msun, respectively, and a projected separation of 55 arcsec.
High-resolution spectroscopy shows that the more massive component undergoes
Doppler variations consistent with Keplerian motion, with a period equal to the
transit period and an amplitude consistent with a companion mass of M_C = 62.8
+/- 2.3 Mjup. Based on an analysis of the Kepler light curve we estimate the
radius of the companion to be R_C = 0.832 +/- 0.021 Rjup, which is consistent
with theoretical predictions of the radius of a > 1 Gyr brown dwarf.Comment: Our previous analysis neglected the dependence of the scaled
semimajor axis, a/R, on the transit depth. By not correcting a/R for the
third-light contamination, we overestimated the mass of Star A, which led to
an overestimate the mass and radius of the LHS6343
- âŠ