3,448 research outputs found
Recommended from our members
Low-Volume and High-Volume Readers of Neurological and Musculoskeletal MRI: Achieving Subspecialization in Radiology.
ObjectiveDifferentiate high- versus low-volume radiologists who interpret neurological (Neuro) MRI or musculoskeletal (MSK) MRI and measure the proportion of Neuro and MSK MRIs read by low-volume radiologists.MethodsWe queried the 2015 Medicare Physician and Other Supplier Public Use File for radiologists who submitted claims for Neuro or MSK MRIs. Radiologists were classified as high-volume versus low-volume based on their work relative value units (wRVUs) focus or volume of studies interpreted using three different methodologies: Method 1, percentage of wRVUs in Neuro or MSK MRI; Method 2, absolute number of Neuro or MSK MRIs interpreted; and Method 3, both percentage and absolute number. Multiple thresholds with each methodology were tested, and the percentage of Neuro or MSK MRIs interpreted by low-volume radiologists was calculated for each threshold.ResultsWith Method 1, 33% of Neuro MRI and 50% of MSK MRI studies were interpreted by a radiologist whose wRVUs in Neuro or MSK MRI were less than 20% (Method 1). With Method 2, 22% of Neuro MRIs and 37% of MSK MRIs were interpreted by radiologists who read fewer than the mean number of Neuro or MSK MRIs interpreted by an "average full-time radiologist" whose wRVUs in Neuro or MSK MRI were approximately 20%. With Method 3, 38% of Neuro MRIs and 57% of MSK MRIs were interpreted by "low-volume" radiologists. If instead a 50% wRVU threshold is used for Methods One, Two, and Three, then 70%, 58%, and 77% of Neuro MRIs and 86%, 80%, and 90% of MSK MRIs are read by low-volume radiologists.DiscussionA large number of radiologists read a low volume of Neuro or MSK MRIs; these low-volume Neuro or MSK MRI radiologists read a substantial portion of Neuro or MSK MRIs. It is unknown which of the methods for distinguishing low-volume radiologists, combined with which threshold, may best correlate with high-performing or low-performing radiologists
Brownian molecular motors driven by rotation-translation coupling
We investigated three models of Brownian motors which convert rotational
diffusion into directed translational motion by switching on and off a
potential. In the first model a spatially asymmetric potential generates
directed translational motion by rectifying rotational diffusion. It behaves
much like a conventional flashing ratchet. The second model utilizes both
rotational diffusion and drift to generate translational motion without spatial
asymmetry in the potential. This second model can be driven by a combination of
a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven)
depending on the chosen parameters. In the third model, elements of both the
Brownian motor and powerstroke mechanisms are combined by switching between
three distinct states. Relevance of the model to biological motor proteins is
discussed.Comment: 11 pages, 8 figure
Act Now for Your Tomorrow: Final Report of the National Commission on Nursing Workforce for Long-Term Care
The nursing workforce shortage faced by long-term care providers stems from factors both outside and inside the organization and operation of long-term care services. The nursing shortage diminishes quality of care and increases the costs of providing services. Resolution of the long-term care nursing workforce challenge will require improvement of the recruitment and retention of nurses. The leadership for the efforts to improve the long-term care workforce must come from the community itself. New and sustained leadership for action by long-term care leaders is the critical factor necessary to the development of the recommended initiatives and the achievement of the goals of the National Commission on Nursing Workforce for Long-Term Care
Recommended from our members
Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH.
ObjectiveTo review follow-up imaging after equivocal bone scans in men with castration resistant prostate cancer (CRPC) and examine the characteristics of equivocal bone scans that are associated with positive follow-up imaging.MethodsWe identified 639 men from five Veterans Affairs Hospitals with a technetium-99m bone scan after CRPC diagnosis, of whom 99 (15%) had equivocal scans. Men with equivocal scans were segregated into "high-risk" and "low-risk" subcategories based upon wording in the bone scan report. All follow-up imaging (bone scans, computed tomography [CT], magnetic resonance imaging [MRI], and X-rays) in the 3 months after the equivocal scan were reviewed. Variables were compared between patients with a positive vs. negative follow-up imaging after an equivocal bone scan.ResultsOf 99 men with an equivocal bone scan, 43 (43%) received at least one follow-up imaging test, including 32/82 (39%) with low-risk scans and 11/17 (65%) with high-risk scans (p = 0.052). Of follow-up tests, 67% were negative, 14% were equivocal, and 19% were positive. Among those who underwent follow-up imaging, 3/32 (9%) low-risk men had metastases vs. 5/11 (45%) high-risk men (p = 0.015).ConclusionWhile 19% of all men who received follow-up imaging had positive follow-up imaging, only 9% of those with a low-risk equivocal bone scan had metastases versus 45% of those with high-risk. These preliminary findings, if confirmed in larger studies, suggest follow-up imaging tests for low-risk equivocal scans can be delayed while high-risk equivocal scans should receive follow-up imaging
Independent evaluation of a simple clinical prediction rule to identify right ventricular dysfunction in patients with shortness of breath
BACKGROUND:
Many patients have unexplained persistent dyspnea after negative computed tomographic pulmonary angiography (CTPA). We hypothesized that many of these patients have isolated right ventricular (RV) dysfunction from treatable causes. We previously derived a clinical decision rule (CDR) for predicting RV dysfunction consisting of persistent dyspnea and normal CTPA, finding that 53% of CDR-positive patients had isolated RV dysfunction. Our goal is to validate this previously derived CDR by measuring the prevalence of RV dysfunction and outcomes in dyspneic emergency department patients.
METHODS:
A secondary analysis of a prospective observational multicenter study that enrolled patients presenting with suspected PE was performed. We included patients with persistent dyspnea, a nonsignificant CTPA, and formal echo performed. Right ventricular dysfunction was defined as RV hypokinesis and/or dilation with or without moderate to severe tricuspid regurgitation.
RESULTS:
A total of 7940 patients were enrolled. Two thousand six hundred sixteen patients were analyzed after excluding patients without persistent dyspnea and those with a significant finding on CTPA. One hundred ninety eight patients had echocardiography performed as standard care. Of those, 19% (95% confidence interval [CI], 14%-25%) and 33% (95% CI, 25%-42%) exhibited RV dysfunction and isolated RV dysfunction, respectively. Patients with isolated RV dysfunction or overload were more likely than those without RV dysfunction to have a return visit to the emergency department within 45 days for the same complaint (39% vs 18%; 95% CI of the difference, 4%-38%).
CONCLUSION:
This simple clinical prediction rule predicted a 33% prevalence of isolated RV dysfunction or overload. Patients with isolated RV dysfunction had higher recidivism rates and a trend toward worse outcomes
Oceanographic drivers of population differentiation in Indo-Pacific bottlenose (Tursiops aduncus) and humpback (Sousa spp.) dolphins of the northern Bay of Bengal
The Bay of Bengal is one of the most productive ecosystems in the northern Indian Ocean and it harbours a rich community of cetaceans, including Indo-Pacific bottlenose (Tursiops aduncus) and humpback (Sousa spp.) dolphins. The taxonomy of these genera has been controversial, but within the Indian Ocean both seem to be divided into phylogenetically discrete units that range from the east to the west. Within the Sousa genus, S. plumbea is distributed in the western Indian Ocean while S. chinensis is distributed in the eastern Indian and western Pacific Ocean. T. aduncus has a discontinuous distribution throughout the Indo-Pacific Ocean and two different phylogenetic units are known to exist, one along the eastern African coast and another one in the eastern Indian and west Pacific Ocean. In this study we investigate the phylogeography of Indo-Pacific humpback and bottlenose dolphins in the northern Bay of Bengal. We sequenced the mitochondrial DNA control region for 17 bottlenose and 15 humpback dolphins and compared the results with previously published sequences within each genus. In both cases, we found that Bangladesh dolphins are genetically different from neighbouring populations. While the Bangladesh T. aduncus seem to be more closely related to the African T. aduncus form than the Pacific form, Sousa spp. seem to be more closely related to individuals from Australia. The genetic uniqueness of these populations has important evolutionary implications, due to their isolation, coastal distribution in a geographic cul-de-sac characterized by an extreme infusion, redistribution and recycling of biological productivity, and conservation implications since their survival is threatened in particular by fatal interactions with fisheries. We suggest that the particular and extreme oceanographic conditions found in the Bay of Bengal may be driving speciation in these dolphins and other marine megafauna.info:eu-repo/semantics/publishedVersio
Exploring VIIRS Continuity with MODIS in an Expedited Capability for Monitoring Drought-Related Vegetation Conditions
Vegetation has been effectively monitored using remote sensing time-series vegetation index (VI) data for several decades. Drought monitoring has been a common application with algorithms tuned to capturing anomalous temporal and spatial vegetation patterns. Drought stress models, such as the Vegetation Drought Response Index (VegDRI), often use VIs like the Normalized Difference Vegetation Index (NDVI). The EROS expedited Moderate Resolution Imaging Spectrora-diometer (eMODIS)-based, 7-day NDVI composites are integral to the VegDRI. As MODIS satellite platforms (Terra and Aqua) approach mission end, the Visible Infrared Imaging Radiometer Suite (VIIRS) presents an alternate NDVI source, with daily collection, similar band passes, and moderate spatial resolution. This study provides a statistical comparison between EROS expedited VIIRS (eVIIRS) 375-m and eMODIS 250-m and tests the suitability of replacing MODIS NDVI with VIIRS NDVI for drought monitoring and vegetation anomaly detection. For continuity with MODIS NDVI, we calculated a geometric mean regression adjustment algorithm using 375-m resolution for an eMODIS-like NDVI (eVIIRS’) eVIIRS’ = 0.9887 × eVIIRS − 0.0398. The resulting statistical comparisons (eVIIRS’ vs. eMODIS NDVI) showed correlations consistently greater than 0.84 throughout the three years studied. The eVIIRS’ VegDRI results characterized similar drought patterns and hotspots to the eMODIS-based VegDRI, with near zero bias
Hubble Space Telescope Astrometry of the Procyon System
The nearby star Procyon is a visual binary containing the F5 IV-V subgiant
Procyon A, orbited in a 40.84 yr period by the faint DQZ white dwarf Procyon B.
Using images obtained over two decades with the Hubble Space Telescope, and
historical measurements back to the 19th century, we have determined precise
orbital elements. Combined with measurements of the parallax and the motion of
the A component, these elements yield dynamical masses of 1.478 +/- 0.012 Msun
and 0.592 +/- 0.006 Msun for A and B, respectively.
The mass of Procyon A agrees well with theoretical predictions based on
asteroseismology and its temperature and luminosity. Use of a standard
core-overshoot model agrees best for a surprisingly high amount of core
overshoot. Under these modeling assumptions, Procyon A's age is ~2.7 Gyr.
Procyon B's location in the H-R diagram is in excellent agreement with
theoretical cooling tracks for white dwarfs of its dynamical mass. Its position
in the mass-radius plane is also consistent with theory, assuming a
carbon-oxygen core and a helium-dominated atmosphere. Its progenitor's mass was
1.9-2.2 Msun, depending on its amount of core overshoot.
Several astrophysical puzzles remain. In the progenitor system, the stars at
periastron were separated by only ~5 AU, which might have led to tidal
interactions and even mass transfer; yet there is no direct evidence that these
have occurred. Moreover the orbital eccentricity has remained high (~0.40). The
mass of Procyon B is somewhat lower than anticipated from the
initial-to-final-mass relation seen in open clusters. The presence of heavy
elements in its atmosphere requires ongoing accretion, but the place of origin
is uncertain.Comment: Accepted by Astrophysical Journa
Realization of the Sensor Web Concept for Earth Science Using Mobile Robotic Platforms
©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2007 IEEE Aerospace Conference,  3-10 March 2007, Big Sky, MT.DOI: 10.1109/AERO.2007.353086In this paper, we discuss the realization of a robotic mobile sensor network that allows for controlled reconfiguration of sensor assets in a decentralized manner. The motivation is to allow the construction of a new system of in-situ science observations that requires higher spatial and temporal resolution models that are needed for expanding our understanding of Earth system change. These observations could enable recording of spatial and temporal variations in environmental parameters required for such activities as monitoring of seismic activity, monitoring of civil and engineering infrastructures, and detection of toxic agents throughout a region of interest. The difficulty in establishing these science observations are that global formation properties must be achieved based on the local interactions between individual sensors. As such, we present a novel approach that allows for the sensor network to function in a decentralized manner and is thus able to achieve global formations despite individual sensor failure, limitations in communication range, and changing scientific objectives. Details on the sensing and control algorithms for controlled reconfiguration will be discussed and results of field deployment will be presented
- …