33 research outputs found

    Hvilken effekt har service recovery på kundelojalitet?

    Get PDF
    I denne oppgaven har vi som formål å se nærmere på om Norwegian ved bruk av service recovery kan bygge tillit og lojalitet til selskapet, på tross av en tidligere negativ opplevelse hos kundene. For eksempel var Norwegian sine problemer rundt innføring av Dreamliner flyene en svært omtalt sak i en lengre periode etter innførsel av de første flyene i 2013. En slik periode med gjentatte problemer kan ene alene skape svikt i bedriftens rykte og kundenes tillit og lojalitet til selskapet. I en situasjon som denne kan service recovery være et virkemiddel for å snu de negative opplevelsene til en positiv følelse. Vi hadde et ønske om å nå så mange respondenter som mulig, og valgte på bakgrunn av dette kvantitativ metode da vi anså dette å være den mest hensiktsmessige metoden for oss. På bakgrunn av en klar og tydelig problemstilling har vi utformet en spørreundersøkelse basert på teori fra DeWitt, Nguyen og Marshall. Spørreundersøkelsen ble først pre-testet før den ble publisert, hvilket gav oss primærdata fra 113 respondenter til å analysere vår problemstilling. For å kunne besvare problemstilling utviklet vi to hypoteser. Våre hypoteser tok utgangspunkt i eksisterende teori, og vi ønsket å avdekke hvorvidt den oppfattede rettferdigheten og tilliten kunden hadde til bedriften i etterkant av en service recovery påvirket gjenkjøpsintensjonen. For å avdekke dette benyttet vi statistikkprogrammet SPSS, hvor vi analyserte de ulike dataene som ble innhentet i spørreundersøkelsen. Det ble gjort en validitetssjekk av undersøkelsen for å se om variablene var samvarierende. Reliabiliteten på spørsmålene ble også sjekket, dette ble gjort for å se om alle spørsmålene fungerte, samlet og hver for seg. Dette ga oss solide resultater, hvor kravet for intern konsistens ble møtt. Videre utførte vi en korrelasjon- og regresjonsanalyse for å teste hvorvidt vi kunne bekrefte, eller avkrefte hypotesene våre. Funnene vi kom fram til viser til at det sannsynligvis finnes en sammenheng mellom både tillit og opplevd rettferdighet etter en service recovery målt mot gjenkjøpsintensjon

    Structure–function relationships of the competence lipoprotein ComL and SSB in meningococcal transformation

    Get PDF
    Neisseria meningitidis, the meningococcus, is naturally competent for transformation throughout its growth cycle. The uptake of exogenous DNA into the meningococcus cell during transformation is a multi-step process. Beyond the requirement for type IV pilus expression for efficient transformation, little is known about the neisserial proteins involved in DNA binding, uptake and genome integration. This study aimed to identify and characterize neisserial DNA binding proteins in order to further elucidate the multi-factorial transformation machinery. The meningococcus inner membrane and soluble cell fractions were searched for DNA binding components by employing 1D and 2D gel electrophoresis approaches in combination with a solid-phase overlay assay with DNA substrates. Proteins that bound DNA were identified by MS analysis. In the membrane fraction, multiple components bound DNA, including the neisserial competence lipoprotein ComL. In the soluble fraction, the meningococcus orthologue of the single-stranded DNA binding protein SSB was predominant. The DNA binding activity of the recombinant ComL and SSB proteins purified to homogeneity was verified by electromobility shift assay, and the ComL–DNA interaction was shown to be Mg2+-dependent. In 3D models of the meningococcus ComL and SSB predicted structures, potential DNA binding sites were suggested. ComL was found to co-purify with the outer membrane, directly interacting with the secretin PilQ. The combined use of 1D/2D solid-phase overlay assays with MS analysis was a useful strategy for identifying DNA binding components. The ComL DNA binding properties and outer membrane localization suggest that this lipoprotein plays a direct role in neisserial transformation, while neisserial SSB is a DNA binding protein that contributes to the terminal part of the transformation process

    Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    Get PDF
    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination

    Effects of DUS orientation, location and multiplication on transformation.

    No full text
    <p>The Y axis shows the efficacy of transformation as percent of the transformation obtained with the internal standard Af plasmid (pDV4-c). Along the X-axis are shown the different DNA substrates (10 ng/ml) identical in all but DUS in three different positions (A, B and C), in two different orientations, forward (f) and reverse (r), and in the combinations of these. For further details on the DNA plasmid templates please consult <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-g001" target="_blank">Figure 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-t002" target="_blank">Table 2</a>. Statistically significant values are indicated above the columns, **equals p≤0.05 and ***equals p≤0.001 in a two-tailed paired student’s t tests.</p

    Deletions in the recombinogenic region of plasmids impose a negative influence on transformation.

    No full text
    <p>The Y axis shows the number of erythromycin-resistant CFU/total CFU 10<sup>8</sup> on a log scale. Along the X-axis are shown the different transforming plasmids (1 µg/ml) with altered regions of homology. For further details on the transforming DNA please consult <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-g001" target="_blank">Figure 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-t002" target="_blank">Table 2</a>. Differences in transformation frequencies are statistically significant from each other as indicated above the columns, **equals p≤0.05 in student’s t-tests.</p

    <i>Nla</i>IV restriction affects plasmid transformation in <i>N. meningitidis</i> MC58 wildtype and not the <i>Nla</i>IV null mutant.

    No full text
    <p>The Y axis shows the number of resistant (erythromycin) CFU/total 10<sup>10</sup> CFU on a log scale. Along the X-axis are the different DNA substrates (10 ng/ml) with altered numbers of <i>Nla</i>IV restriction sites shown. pDV4-a harbours two and three <i>Nla</i>IV restriction sites more than pDV4-b and pDV4-c, respectively. For further details of the restriction profiles and DUS locations in the transforming DNA plasmids please consult <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-g001" target="_blank">Figure 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-t002" target="_blank">Table 2</a>. Statistically significant differences in transformation frequencies between the <i>Nla</i>IV null mutant and wildtype backgrounds are indicated above the columns, ***equals p≤0.001 in a two tailed paired student’s t-test.</p

    The influence of DUS location on transformation.

    No full text
    <p>The Y axis shows the number of erythromycin-resistant CFU/total CFU 10<sup>8</sup> on a log scale. Along the X-axis are shown the transforming DNA (1 µg/ml) that differ in <i>Nla</i>IV restriction profiles and DUS location. For further details on the DNA plasmid templates please consult <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-g001" target="_blank">Figure 1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039742#pone-0039742-t002" target="_blank">Table 2</a>. Statistically significant values are indicated above the columns, **equals p≤0.05 and ***equals p≤0.001 in a two-tailed paired student’s t tests.</p
    corecore