146 research outputs found

    Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Get PDF
    Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags. <br></br> We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly <i>k</i><sup>-5/3</sup>. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component). There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average) the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements. <br></br> Using spectra and structure functions for the wind, we then estimate their exponents (β, <i>H</i>) at small (5/3, 1/3) and large scales (2.4, 0.73). The latter being very close to those estimated by drop sondes (2.4, 0.75) in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero-scale and the critical transition scale. The latter varies quite widely from scales of kilometers to greater than several hundred kilometers. The overall conclusion is that up to the critical scale, the aircraft follows a fractal trajectory which may increase the intermittency of the measurements, but doesn't strongly affect the scaling exponents whereas for scales larger than the critical scale, the aircraft follows isobars whose exponents are different from those along isoheights (and equal to the vertical exponent perpendicular to the isoheights). We bolster this interpretation by considering the absolute slopes (|Δ<i>z</i>/Δ<i>x</i>|) of the aircraft as a function of lag Δ<i>x</i> and of scale invariant lag Δ<i>x</i>/Δ<i>z<sup>1/H<sub>z</sub></sup></i>. <br></br> We then revisit four earlier aircraft campaigns including GASP and MOZAIC showing that they all have nearly identical transitions and can thus be easily explained by the proposed combination of altitude/wind in an anisotropic but scaling turbulence. Finally, we argue that this reinterpretation in terms of wide range anisotropic scaling is compatible with atmospheric phenomenology including convection

    Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range

    Full text link
    Recent work investigating resonant nonlinear magneto-optical rotation (NMOR) related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic coherences has demonstrated potential magnetometric sensitivities exceeding 10−11G/Hz10^{-11} {\rm G/\sqrt{Hz}} for small (≲1μG\lesssim 1 {\rm \mu G}) magnetic fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is studied in the regime where the longitudinal magnetic field is in the geophysical range (∼500mG\sim 500 {\rm mG}), of particular interest for many applications. In this regime a splitting of the FM NMOR resonance due to the nonlinear Zeeman effect is observed. At sufficiently high light intensities, there is also a splitting of the FM NMOR resonances due to ac Stark shifts induced by the optical field, as well as evidence of alignment-to-orientation conversion type processes. The consequences of these effects for FM-NMOR-based atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure

    Environmental Factors in the Relapse and Recurrence of Inflammatory Bowel Disease:A Review of the Literature

    Get PDF
    The causes of relapse in patients with Crohn's disease (CD) and ulcerative colitis (UC) are largely unknown. This paper reviews the epidemiological and clinical data on how medications (non-steroidal anti-inflammatory drugs, estrogens and antibiotics), lifestyle factors (smoking, psychological stress, diet and air pollution) may precipitate clinical relapses and recurrence. Potential biological mechanisms include: increasing thrombotic tendency, imbalances in prostaglandin synthesis, alterations in the composition of gut microbiota, and mucosal damage causing increased permeability

    Mitochondrial Single-stranded DNA-binding Proteins Stimulate the Activity of DNA Polymerase γ by Organization of the Template DNA

    Get PDF
    The activity of the mitochondrial replicase, DNA polymerase γ (Pol γ) is stimulated by another key component of the mitochondrial replisome, the mitochondrial single-stranded DNA-binding protein (mtSSB). We have performed a comparative analysis of the human and Drosophila Pols γ with their cognate mtSSBs, evaluating their functional relationships using a combined approach of biochemical assays and electron microscopy. We found that increasing concentrations of both mtSSBs led to the elimination of template secondary structure and gradual opening of the template DNA, through a series of visually similar template species. The stimulatory effect of mtSSB on Pol γ on these ssDNA templates is not species-specific. We observed that human mtSSB can be substituted by its Drosophila homologue, and vice versa, finding that a lower concentration of insect mtSSB promotes efficient stimulation of either Pol. Notably, distinct phases of the stimulation by both mtSSBs are distinguishable, and they are characterized by a similar organization of the template DNA for both Pols γ. We conclude that organization of the template DNA is the major factor contributing to the stimulation of Pol γ activity. Additionally, we observed that human Pol γ preferentially utilizes compacted templates, whereas the insect enzyme achieves its maximal activity on open templates, emphasizing the relative importance of template DNA organization in modulating Pol γ activity and the variation among systems

    Evolution and stoichiometry of heterogeneous processing in the Antarctic stratosphere

    Get PDF
    Simultaneous in situ measurements of HCl and ClO have been made for the first time in the southern hemisphere, allowing a systematic study of the processes governing chlorine activation between 15 and 20 km in the 1994 Antarctic winter. Data for several other gases (O_3, NO, NO_y, OH, HO_2, N_(2)O, CH_4, CO, H_(2)O, CFCs), particulates, and meteorological parameters were collected from the ER-2 aircraft out of New Zealand as part of the 1994 Airborne Southern Hemisphere Ozone Experiment/Measurements of Atmospheric Effects of Stratospheric Aircraft (ASHOE/MAESA) campaign. Observations from the ER-2 in the fall (April–May), prior to polar night, show that chlorine activation begins with 60–75% of inorganic chlorine as HCl. By midwinter (July–August), near-total removal of HCl is observed. The wintertime loss of HCl in air recently exposed to extreme temperatures is found to be correlated with high levels of reactive chlorine (ClO and its dimer, Cl_(2)O_2) in the linear fashion expected from the stoichiometry of the heterogeneous reaction of hydrochloric acid with chlorine nitrate on polar stratospheric clouds (PSCs): HCl + ClONO_2 → Cl_2 + HNO_3. To constrain the role of different heterogeneous reactions and PSC types, we have used a photochemical trajectory model which includes heterogeneous sulfate and PSC chemistry. Model calculations of the evolution of reactive gases are compared with the in situ observations. In addition, simultaneous measurements of OH and HO_2 are used as a diagnostic for the occurrence of the heterogeneous reaction HOCl + HCl → Cl_2 + H_(2)O, which contributes to suppressed levels of HO_x inside the vortex. It is shown that the amount of chlorine activation is not strongly dependent on the composition of PSCs. However, HO_x levels exhibit different signatures depending on the type of heterogeneous surfaces that affected chlorine activation. Furthermore, this analysis implies that in the edge region of the Antarctic vortex, the observed near-total removal of HCl can result from latitudinal excursions of air parcels in and out of sunlight during the winter, which photochemically resupply HOCl and ClONO_2 as oxidation partners for HCl

    Hyperfine resolved spectrum of the molecular dication DCl

    Get PDF
    We have obtained hyperfine-resolved infrared spectra of a PQ23(N) branch line in the v = 2-1 band of the X 3Σ- state of the molecular dication D35Cl2+. Analysis of the hyperfine structure allows us to estimate the magnitude of the Fermi contact interaction for the chlorine nucleus; bF(Cl) = 167 (25) MHz

    Patient-reported outcomes in palliative gastrointestinal stenting: a Norwegian multicenter study

    Get PDF
    Background The clinical effect of stent treatment has been evaluated by mainly physicians; only a limited number of prospective studies have used patient-reported outcomes for this purpose. The aim of this work was to study the clinical effect of self-expanding metal stents in treatment of malignant gastrointestinal obstructions, as evaluated by patient-reported outcomes, and compare the rating of the treatment effect by patients and physicians. Methods Between November 2006 and April 2008, 273 patients treated with SEMS for malignant GI and biliary obstructions were recruited from nine Norwegian hospitals. Patients and physicians assessed symptoms independently at the time of treatment and after 2 weeks using the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30 questionnaire supplemented with specific questions related to obstruction. Results A total of 162 patients (99 males; median age = 72 years) completed both assessments and were included in the study. A significant improvement in the mean global health score was observed after 2 weeks (from 9 to 18 on a 0–100 scale, P\0.03) for all stent locations. Both patients and physicians reported a significant reduction in all obstruction-related symptoms ([20 on the 0–100 scale, P\0.006) after SEMS treatment. The physicians reported a larger mean improvement in symptoms than did the patients, mainly because they reported more severe symptoms before treatment. Conclusion SEMS treatment is effective in relieving symptoms of malignant GI and biliary obstruction, as reported by patients and physicians. The physicians, however, reported a larger reduction in obstructive symptoms than did the patients. A prospective assessment of patientreported outcomes is important in evaluating SEMS treatment

    Current trends in the cardiovascular clinical trial arena (I)

    Get PDF
    The existence of effective therapies for most cardiovascular disease states, coupled with increased requirements that potential benefits of new drugs be evaluated on clinical rather than surrogate endpoints, makes it increasingly difficult to substantiate any incremental improvements in efficacy that these new drugs might offer. Compounding the problem is the highly controversial issue of comparing new agents with placebos rather than active pharmaceuticals in drug efficacy trials. Despite the recent consensus that placebos may be used ethically in well-defined, justifiable circumstances, the problem persists, in part because of increased scrutiny by ethics committees but also because of considerable lingering disagreement regarding the propriety and scientific value of placebo-controlled trials (and trials of antihypertensive drugs in particular). The disagreement also substantially affects the most viable alternative to placebo-controlled trials: actively controlled equivalence/noninferiority trials. To a great extent, this situation was prompted by numerous previous trials of this type that were marked by fundamental methodological flaws and consequent false claims, inconsistencies, and potential harm to patients. As the development and use of generic drugs continue to escalate, along with concurrent pressure to control medical costs by substituting less-expensive therapies for established ones, any claim that a new drug, intervention, or therapy is "equivalent" to another should not be accepted without close scrutiny. Adherence to proper methods in conducting studies of equivalence will help investigators to avoid false claims and inconsistencies. These matters will be addressed in the third article of this three-part series

    DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1,2,3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton4, and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified5. However, eukaryotic phytoplankton probably produce most of Earth’s DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution
    • …
    corecore