1,891 research outputs found

    Ferromagnetic resonance force microscopy on a thin permalloy film

    Full text link
    Ferromagnetic Resonance Force Microscopy (FMRFM) offers a means of performing local ferromagnetic resonance. We have studied the evolution of the FMRFM force spectra in a continuous 50 nm thick permalloy film as a function of probe-film distance and performed numerical simulations of the intensity of the FMRFM probe-film interaction force, accounting for the presence of the localized strongly nonuniform magnetic field of the FMRFM probe magnet. Excellent agreement between the experimental data and the simulation results provides insight into the mechanism of FMR mode excitation in an FMRFM experiment.Comment: 9 pages, 2 figure

    Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    Get PDF
    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm−3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm−2 to −6.60 × 1012 cm−2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices

    The 157 nm Photodissociation of OCS

    Get PDF
    The photodissociation of OCS at 157 nm has been investigated by using tunable vacuum ultraviolet radiation to probe the CO and S photoproducts. Sulfur is produced almost entirely in the 1S state, while CO is produced in its ground electronic state and in vibrational levels from v=0-3 in the appropriate ratio (v=0):(v=1):(v=2):(v=3) = (1.0):(1.0):(0.5):(0.3). The rotational distribution for each vibrational level is found to be near Boltzmann, with temperatures that decrease from 1350 K for v=0 to 780 K for v=3. Measurements of the CO Doppler profiles demonstrate that the dissociation takes place from a transition of predominantly parallel character (β=1.8±0.2) and that the CO velocity and angular momentum vectors are perpendicular to one another

    Spatial variation in spring arrival patterns of Afro‐Palaearctic bird migration across Europe

    Get PDF
    Aim: Geographical patterns of migrant species arrival have been little studied, despite their relevance to global change responses. Here, we quantify continent-wide inter-specific variation in spatio-temporal patterns of spring arrival of 30 common migrant bird species and relate these to species characteristics and environmental conditions.Location: EuropeTime period: 2010-2019Major taxa studied: Birds, 30 speciesMethods: Using citizen science data from EuroBirdPortal, we modelled arrival phenology for 30 Afro-Palearctic migrant species across Europe to extract start and duration of species arrival at a 400 km square resolution. We related inter and intra-specific variation in arrival and duration to species characteristics and temperature at the start of the growing season (green-up) .Results: Spatial variation in start of arrival times indicates it took on average 1.6 days for the leading migratory front to move northwards by 100 km (range: 0.6—2.5 days). There was a major gradient in arrival phenology, from species which arrived earlier, least synchronously, in colder temperatures and progressed slowly northwards to species which arrived later, most synchronously and in warmer temperatures, and advanced quickly through Europe. The slow progress of early arrivers suggests that temperature limits their northward advance; this group included Aerial Insectivores and species wintering north of the Sahel. For the late arrivers, which included species wintering further south, seasonal resource availability in Africa may delay their arrival into Europe.Main conclusions: We found support for the green-wave hypothesis applying widely to migratory landbirds. Species arrival phenologies are linked to ecological differences between taxa, such as diet, and wintering location. Understanding these differences informs predictions of species’ sensitivity to global change. Publishing these arrival phenologies will facilitate further research and have additional conservation benefits such as informing designation of hunting seasons. Our methods are applicable to any taxa with repeated occurrence data across large scales. Key words: phenology, European-African migrants, bird migration, spring arrival, spatial variation, intraspecific and interspecific variation, EuroBirdPortal, citizen scientists, complete lists and casual record

    Exponential convergence of hp-DGFEM for elliptic problems in polyhedral domains

    Get PDF
    We review the recent results of [21, 22], and establish the exponential convergence of hp-version discontinuous Galerkin finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and constant coefficients in threedimsional and axiparallel polyhedra. The exponential rates are confirmed in a series of numerical tests

    Migration Patterns, Use of Stopover Areas, and Austral Summer Movements of Swainson\u27s Hawks

    Get PDF
    From 1995 to 1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. We tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks followed three basic routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20°N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migration lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and northcentral Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Argentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers
    corecore