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PREFACE

This report presents the results of studies conducted during the
period July 19, 1969 — July 19, 1970, under NASA Research Contract
NAS 8-21432, "Lunar Surface Engineering Properties Experiment Definition.“
This study was sponsored by the Lunar Exploration Office, NASA Head-
quarters, and was under the technical cognizance of Dr. N. C. Costes,

Space Science Laboratory, George C. Marshall Space Flight Center.

The report reflects the combined effort of five faculty investiga-
tors, a research engineer, a project manager, and eight graduate research
assistants, representing several engineering and scientific disciplines
pertinent to the study of lunar surface material properties. James K.
Mitchell, Professor of Civil Engineering, served as Principal Investigator
and was responsible for those phases of the work concerned with problems
relating to the engineering properties of lunar soils and lunar soil
mechanics. Co-investigators were William N. Houston, Assistant Professor
of Civil Engineering, who was concerned with problems relating to the
engineering properties of lunar soils; Richard E. Goodman, Associate
Professor of Geological Engineering, who was concerned with the engineer-
ing geology and rock mechanics aspects of the lunar surface; Paul A.
Witherspoon, Professor of Geological Engineering, who was concerned with
fluid conductivity of lunar surface materials in general; Franklin C. -
Hurlbut, Professor of Aeronautical Science, who was concerned with
experimental studies on fluid conductivity of lunar surface materials;
and D. Roger Willis, Associate Professor of Aeronautical Science, who
conducted theoretical studies on fluid conductivity of lunar surface
materials. Dr. Karel Drozd, Assistant Research Engineer, performed
laboratory tests and<anélyses pertinent to the development of a borehole
jack for determination of the in situ characteristics of lunar soils
and rocks; he also helped in the design of the borehole jack. H. Turan
Durgunoglu, H. John Hovland, Laith I. Namiq, Parabaronen Raghuraman,
James B. Thompson, Donald D. Treadwell, C. Robert Jih, Suphon Chirapuntu,
and Tran K. Van served as Graduate Research Assistants and carried

out many of the studies leading to the results presented in this
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report. Ted S. Vinson, Research Engineer, served as project manager
until May 1970, and contributed to studies concerned with lunar soil
stabilization. H. John Hovland served as project manager after May
1970, and contributed to studies concerned with soil property evaluation

from lunar boulder tracks.
Ultimate objectives of this project were:

1) Assessment of lunar soil and rock property data using information

obtained from Lunar Orbiter, Surveyor, and Apollo missions.

2) Recommendation of both simple and sophisticated in situ testing
techniques that would allow determination of engineéring

properties of lunar surface materials.

3) Determination of the influence of variations in lunar surface
conditions on the performance parameters of a lunar roving

vehicle.

4) Development of simple means for determining the fluid

conductivity properties of lunar surface materials.

5) Development of stabilization techniques for use in loose, -
unconsolidated lunar surface materials to improve the

gerformance of such materials in lunar engineering application.

The scope of specific studies conducted in satisfaction of these objectives
is indicated by the following list of contents from the Detailed Final
Report which is presented in four volumes. The names of the investigators

associated with each phase of the work are indicated.
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VOLUME I
Mechanics, Properties, and Stabilization of Lunar Soils

Chapter 1. LUNAR SOIL SIMULANT STUDIES
W. N. Houston, L. I. Namiq, J. K. Mitchell, and D. D. Treadwell*

INTRODUCTION

The study of lunar soil properties has been continued using
simulated lunar soil. To better represent the actual lunar soil as
revealed by the Apollo 11 and 12 missions, the lunar soil simulant
used in previous studies (Mitcheli and Houston, 1970}, was modified as

described in the following sections.

Special emphasis was placed on the determination of stress-strain,
strength, compressibility, and trafficability parameters and their
variations with density. Stress-deformation characteristics were

determined through plate-load, boot—-imprint, and penetrometer tests.

The lunar soil simulant was also used in feasibility studies for
several simple geotechnical tests, which have been proposed for later
Apcllo missions. These include penetrometer tests, plate load tests,
trenching, ana core tube sampling. The results of these studies with
the lunar soil simulant are being used as a basis for recommendations
for modification of existing Apollo hand tools and for the design of

new devices for the in situ study of lunar surface materials.

MODIFICATION OF LUNAR SOIL SIMULANT

The lunar soil simulant used prior to August 1969 is described in
detail in Volume 1 of the Final Report (Mitchell and Houston, 1970).
The selection of this simulant, hereafter referred to as Lunar Soil
Simulant No. 1 (LSS No. 1), was based primarily on the results of early

Surveyor missions.

*D. D. Treadwell's contribution is primarily in connection with the core
tube studies.



Following the Apollo 11 mission, gradation data for the actual
lunar soil were obtaihed'in the Lunar Receiving Laboratofy, MSFC. The
data obtained were most reliable for the particle size distribution in
the coarse range. It was found, for example, that the per cent larger
than 1 mm was about 7 to 10. Unfortunately, the gradation data for
sizes less than the No. 100 sieve were not as reliable because only
dry sieving (in a nitrogen atmosphere) was used and the fine particles
were observed to aggregate, as do most terrestrial soils in this size

range.

Additional data of great value were obtained on earth-returned
samples of Apollo 11 material by performing penetration tests using
1/4-inch~-diameter rod on the material packed in a 3.5-inch-diameter,
2-inch high container (Costes et al., 1970). These tests were performed
using the minus-l-mm fraction of the soil. A similar series of 1/4-inch-
rod penetration tests were performed on the minus-l-mm fraction of Lunar
Soil Simulant No. 1. For eéch series, the value of G (the slope of the
stress-penetration curve) was plotted against void ratio, e. Void ratio
rather than density was used, because the value of specific gravity for
the Apollo 11 soil, 3.1, differed significantly from the value 2.88 for
LSS No. 1. Figure 1-1 may be used to convert void ratio to density for

the actual lunar soil and the lunar soil simulant.

Penetration test results for the two soils are combared in Figure 1-2.
The excellent agreement for the G-void ratio relationships indicates that
the minus-l-mm fraction of LSS No. 1 is a good match for the minus-l-mm
fraction of the Apollo 11, at least in regard to penetration resisténce
behavior of the material. It followé that if the plus—1-mm fraction of LSS
No. 1 could be made similar to that of Apollo 11 soil, a good match overall
could be obtained. As a matter of fact, however, the gradation data for
the Apollo 11 material show that the per cent plus-l-mm is sufficiently

small that the characteristics of this fraction should be relatively

unimportant in influencing the mechanical behavior of the whole soil.

On the basis of these test results and observations, it was decided
to reduce the percentage of plus-l-mm material in LSS No. 1 from the
original value of 30 to a value of 7 to 10, so as to more closely match

the Apollo 11 material. To produce the 7000 1lb of simulant needed for
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large-scale model testing, it was necessary to sieve and mix some
additional stock material, as was done in the preparation of LSS No. 1.
The sieving and mixing operations were accomplished as described in
the Final Report of January 1970 {(Mitchell and Houston, Vol. I}.
Reprocessing and preparation were accomplishéd over a period of about
4 months'and the modified gradation obtained is shown in Figure 1-3 as

Lunar Soil Simulant No. 2 (I.SS No. 2).

Subsequently, a more reliable gradation curve for the soil returned
by Apollo 11 was obtained, and the gradation for the Apollo 12 core

tube samples became available. These curves are shown in Figure 1-3.

STRENGTH AND STRESS~STRAIN CHARACTERISTICS

Vacuum plane strain shear tests were conducted on specimens

representing a range of different initial void ratios. Plane strain

tests were used because plate load deformation, boot imprints, trench
‘Wall failures, and most foundation deformations are closer to plane

strain than the triaxial loading conditions. The tests were conducted

at a constant rate of deformation of 0.03 inch per minute on specimens
with confining pressures ranging from 0.05 to 0.4 kg/cmz. Specimen
dimensions before the application of confining pressure were 11.5 cm

in length, 4.6 cm in width, and about 15 cm in height. The deviator load
applied to the specimen was measured with a load cell; the axial deforma-
tion was measured with a dial gage. The volume change during the duration
of the test was monitored by the movement of a water bubble in the vacuum
line. A confining pressure of about 0.05 kg/cm2 was found to be about the
lowest value which could be used, because for lower values membrane
corrections became too large relative to the strength. A constant water
content of 1.9% was used for the test series discussed in the following
paragraphs. Corresponding values of the various parameters were,determined

for a second test series at w = 1.0%. These values are presented at the

end of this section.

The preparation of specimens such that they would have the same void
ratio under different confining pressures was attempted but found to

be nearly impossible without repeated trials. Therefore, specimens were
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prepared over a range of void ratios for each confining pressure, thus
enabling determination of results for any void ratio by interpolation.
Due to changing membrane correction during each test and from test to
test, it was also found impossible to hold the confining pressure
precisely constant during the shear test. These difficulties made it
necessary to develop a series of cross-plots so as to relate the strength
and stress—strain parameters of interest to void ratio, The procedures

used are described in the following paragraphs.

Principal Stress Difference at Faillure Gdf

The test data indicated that the principal stress ratios at failure
(01/03)f, varied linearly with the log of eC (the void ratio after the
application of confining pressure but before shear) for different values

of the minor principal stress at failure, o Figure l-4a shows this

3f£°
relationship for LSS No. 2 at a water content of 1.9%. The lines shown

in Fiqure 1l-4a were located on the basis of both the data points indicated
and previous experience and test results which indicated that curves of

this type do not cross. The principal stress difference at failure, Odf'

for constant values of ec but at different wvalues of ¢ could be deter-

3f’
mined from Figure 1-4a. The relationship between log Odf

different values of 03f was found to be linear, as shown in Figure l-4b.

from Figure 1-4 were used to generate the linear

and e for
C

Values of Gdf and O3f

relationship for any void ratio between log o and log © shown in

3f’

af and log 03f has been

found for other granular soils. This relationship can be expressed mathe-

afg
Figure 1-5. A linear relationship between log ¢

matically as a parabola:

O3f Gf
- 2L : 2 -
Odf I 51 (for 03f and Odf in kg/cm®) , (1-1)
where

I= intercept, a function of eC at 03f = 0.1 kg/cm2

Gf = slope of the relationship between log Gdf and O3f

0.875 (a constant for all values of ec).
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Equation (1-1) was chosen to relate Oag and Os¢ rather than the usual
c~tan ¢ relationship, because ¢ was found to vary slightly with confining

pressure.

It was found that log I varies linearly with e s as .shown in Figure

1-6. This variation is described by the following equation:

(1-2)

i
=
O
O

where Ld

and M = 0.815

for LSS No. 2 at w = 1.9%.

Hence, the wvalue of the principal stress difference at failure, O3

readily be determined for any void ratio and confining pressure using

gr can

‘Equation (1-1).

It is important to note, however, that while Equation (1-1) indicates
that, for 03f = 0, Gdf = Q, the LSS does have a finite cohesion (as
discussed in following paragraphs): Therefore, the lower limiting value
of qdf is;2c, where ¢ = cohesion.

Cohesion, c.

The variation of cohesion, ¢, with void ratio, e, has been determined
by excavating trenches with wvertical walls in the lunar soil simulant as
previously described in detail (Mitchell and Houston, Jan. 1970, Final
Report, Vol. I). Figure 1-7 shows the values obtained. It was found that
the variation of cohesion with void ratio was about the same for LSS
No. 2 as for LSS No. 1, with the values of cohesion for LSS No. 2 at
w o= 2.0% about the same as those for 1SS No. 1 at w =.l.8%.

The relationship between cohesion (c¢) and void ratio for LSS No. 2
(w = 2.0%) can be represented mathematically, within the range of wvoid

ratios of interest, as follows:

¢ = 3;322 e (1=3)
(10)“°
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where ¢ cohesion, gm./cm2

void ratio.

®
i

Cohesion values at other water contents may be estimated from Figure

1-7 by interpolation.

Friction Angle, ¢

Equation (1-1) was used to compﬁte Gdf for different void ratios at
03f values ranging from 0.05 to 0.4 kg/cmz. This allowed the determination
of the friction angle, ¢, for several values of void ratio before shear, ec.
Figure 1-8 shows the obtained relationship between tan ¢ and 1/ec.

Although the data showed a small decrease in ¢ value with confining pres-
sure, which is usual, the single line shown on Figure 1-8 provides a
suitable average value for the range of confining pressures considered.
The slope of the line in Figure 1-8 is slightly greater than was found
for LSS No. 1.

Axial Strain at Failure, Eaf

The test data indicate that the relationship between axial strain
at failu:é, Eaf’ and pre-shear void ratio, ec, can best be approximated

by straight lines on a semilog plot for different values of ¢ Figure

3f°

1-9 shows this relationship. Considerable scatter in the € £ values for

LSS No. 2 was observed, but this has been observed for several other
granular soils as well. Fortunately, analyses have shown that the tangent
to the stress-strain curve, an important parameter whose development is
described in following paragraphs, is not highly sensitive to the strain

at failure. Values of eaf were then crossplotted with values of O g

Linear relationships were found between 03f/€af and Oa¢ for different

values of e as shown in Figure 1-10. This relationship can be described

by the hyperbolic equation:

T3¢

€ = e o (1-4)
f + 4
a a b 03f

in percent)

£ i 2
(for 03f in kg/cm® and Ea

f
where a

int t at =
ercept a O3f o

o
il

slope of the line in Figure 1-10.
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The variations of a and b with void ratio are shown in Figures 1-11

and 1-12, respectively. These relations can be described mathematically
as follows.

From Figure 1-11,

a= -—-—FT , (1-5)
(10) €.
and from Figure 1-12,
b = —i . (1-6)
(10) € &¢

Tangent Modulus for Plane Strain, Etps

As is the case for almost all soils, the relationship between the

principal stress difference, Gd, and the axial strain, ea, is nonlinear.

The relationship‘between od and ea at any stress level (od/c = 5, where

af
n
Gdf is the principal stress difference at failure) may be described in

terms of a tangent modulus, E . The tangent modulus for plane strain

tps
can be defined as:
do
- d
Etps T de -7
a
The procedure for determination of E is as follows.

tps

The stress level, D, was plotted versus the normalized axial strain
(e /e, =€) . The data are shown in Figures 1-13, 1-14, and 1-15. The
plots indicate that the relationship between D and Ea can reasonably be
assumed to be independent of e_r for 03 = constant. The three normalized
stress-strain curves from Figures 1-13, 1-14, and 1-15 are replotted in
Figure 1-16, which shows that a single, normalized stress-strain curve
can be used with only small sacrifice in accuracy. The advantage of
using the single solid curve shown in Figure 1-16 is that the relationship

between D and €a is independent of confining pressure.

‘ The normalized stress~strain curve can be represented reasonably
well by a hyperbola. Hyperbolas have been found by several investigators,

{(Konder and Zelasko 19633 Duncan and Chang, 1969; and Kulhawy and
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Duncan, 1970) to represent stress-—strain curves quite satisfactorily

up to the point of peak deviator stress. The equation of the hyperbola -

is

5 T em——— {4 (1—8)

where a and b are the intercept and slope, respectively , of the
transformed plot shown in Figure 1-17 which indicates that Ea/D varies

linearly with Ea'

From Figure 1~17, a = 0.485 and b = 0.475. Since 1/5 represents the
ratio of stress to strain at zero strain, it is analogous to an initial
tangent modulus, Ei' for an ordinary stress~strain curve. Since the
stress-strain curve has been normalized in Figure 1-17, the adctual value

of Ei is given by:

=
I
=

(1-9)

It is important to note that the stress-~strain pafameters described
herein were developed for loading conditions where the confining pressure
is held constant during application of shear stress. Thus, the value of

confining pressure at failure, 0__, is equal to the value of O_ at the

3
are both influenced by 03f to

3f

beginning of shear. Because Odf and Ea

differing degrees, the influence of ¢

3ffon the initial tangent modulus,
Ei' is not immediately apparent when normalized stress-strain curves are
used. As an example, to show the variation of Ei with confining pressure,
a typical value of void ratio, eC = 0.8 was selected and values of Ei

were computed using Equation (1-9). These values were plotted versus C

7
in a log~log plot as shown in Figure 1-18. The equation of this line *
is
o2\
Ei = k pa —‘5— (1-10)
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where P, is atmospheric pressure and k and n are constants. The average

value of n for the pressure range shown in Figure 1-18 is about 0.45.

The value of b in Equation (1-8) is the inverse of the value of the
horizontal asymptote that D approaches as the strain becomes infinitely
large. kThe value of this horizontal asymptote may be called the hyperbolic
faiiure—stress level, th’ and is useful in describing stress—strain
curves. Values of th greater than 1 indicate that the hyperbola used
to represent the stress~strain curve continues to rise after D reaches 1.
This presents no particular problem, however, since real values of D can-

not exceed unity, and no computations are made using greater values of

this parameter. The failure ratio, Rf, is defined as

and is commonly used in describing hyperbolic stress-strain curves. It
can be evaluated from Figure 1-~17.
1 -
Rf = ____.— = b (1"11)
th
The value of the plane strain tangent modules, Etps’ is the slope

of the stress-strain curve.

If the stress~strain curve is represented as a hyperbola, differentiation

yields the following result:

04 )2
E ={1 - E, (1-12)
tps Gdfh i
where g . = principal stress difference

q
il

afh hyperbolic principal stress difference at failure

=
il

initial tangent modulus.



In terms of stress levels, Equation (1-12) becomes

2
- g
D af \ =
E =l - E,
tps ( th) (eaf) 1
. _\2 g -
B, =(1-RrD Ei‘-f- B . (1-13)
P af i

Equation (1-13) can be used in an incremental nonlinear elastic

or

analysis to compute the plane strain tangent modulus for any void ratio,

confining pressure, or stress level.

The variation of Poisson's ratio with stress level is also needed for

such an incremental nonlinear elastic analysis. The variation of Poisson's
ratio may be evaluated with knowledge of the ratio of lateral strain to.

axial strain, as discussed in the following section.

Ratio of Lateral Strain to Axial Strain at Failure, (sﬁ/ea)f

The test data indicate that the ratio (eﬁ/sa)f varies linearly with

e, for different values of © gr as shown in Figure 1-19. For convenience,

3

82 was assumed positive for extension. Values of (Sg/ea)f and U3f wexre

taken from Figure 1-19, and a linear relationship was obtained when

(ez/ea)f was plotted vs log O__., for e, = constant, as shown in Figure 1-20.

3f
This relationship may be expressed by the equation
(él/ga)f = IR + S log (G3f/0.1> ’ (1-14)
where IR = intercept at 03f = 0.1 kg/cm2

and s

change in‘szf/eaf for 1 log-cycle of ¢__, which is in kq/cm2

3f
slope.

The intercept I_ as well as the slope S were found to be linearly

R
related to ec,»as shown in Figures 1-21 and 1-22, respectively. Hence,
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the following equations may be used to express their wvalues:

IR =0T+ V e (1-15)
and '

S =Y +3Ze, (1-16)
where

U = intercepts at ec =

Y = intercepts at e, = 0

V = slopes

Z = slopes .

Tangential Lateral Strain Ratio for Plane Strain, (Ek/ea)tps

The volume changes associated with shear may be described by the ratio
of ek/sa' at any stress level, 5, or axial strain, Ea. This ratio, 82/€a'
is not constant, nor does it vary linearly with D or ea. The instantaneous

change in 82 with respect to Ea may be defined as:

€ de
(E—Z.) = X (1-17)
a ’tps dea

An equation allowing the computation of (ez/ea)tps at any stress level,

5, was developed as follows.

The normélized axial strains, ea/e = Ea’ were plotted versus the normal

af
ized lateral strains, Sﬁ/elf = Ez, as shown in Figures 1-23, 1-24, and
1-25 for Ujf = 0.059 0.1, 0.4 kg/cmz, regspectively.

The relationshiplbetween—gg and Ea is essentially independent of e r
as can be observed from the plots. Hyperbolic representations of these
curves were made in a manner similar to that used for the stress-—strain
curves discussed previously. Hyperbolas have been used for lateral-strain
variation by other investigators (Kulhawy and Duncan, 1970). The
tfangformed plots of the hyperbolic representation are shown in
Figure 1-26. All lines can reasonab}y be passed through (EZ(Ea) = EZ = 1.0.

Values of the inverse of the intercepts, (Ie), at €, = 0 are related

L

linearly to log O__, as shown by Figure 1-27.

3f

Therefore, the hyperbolic relationship between Ea and Eg may be

expressed as follows:

g = (1-18)



€q

NORMALIZED AXIAL STRAIN

1.0

Wz 1L99%

O34 * 0.0 KSC

€c

O 0.958
O 0.854
A 0.669

0.2 04 06

NORMALIZED LATERAL STRAIN,

0.8

€

| Fig. 1-23. Variation of normalized Tateral strain with"

normalized axial strain for O,¢ = 0.05 kg/cm?.

1.0

1=32



€q

"AXIAL STRAIN

NORMALIZED

1-33

normalized axial strain for o,¢ = 0.1 kg/cm?.

opa Wz 1.9%
o Oy o 01 KSC
¢ ———
O 0.804
0O o.767 _
A 0.641
fp
A
A ] . | i
0.2 0.4 0.6 0.8
NORMALIZED LATERAL STRAIN , €,
Fig. 1-24. Variation of normalized lateral strain with

1.0



€

»

NORMALIZED AXIAL STRAIN

1.0

NORMALIZED LATERAL STRAIN, €,

Fig. 1-25. Variation of normalized lateral strain with
' normalized axial strain for o . = 0.4 kg/cm?.

i i I T |
0
W = L9 °/¢ ]
a‘u s 0.4 KSC
€
O 0.793
L. O o.707 |
4L 0,801
D ™ I
" S —_
a
| ; ] ] | . |
0.2 0.4 ’ 0.6 0.8

1-34



1.0

|
=

€q

Y4

W = 1.9 9,

=

T34
(0] .08
O 10
14 .40
L | | |

Fig

0.2 0.4 0.6 08

€y

. 1-26. Transformed hyperbolic plot for normalized
lateral strain.

1-35



2.5 T T T TTTT T T TTTTT]
wW=19 %
2.0
1. -
yot” n IIe : 1.68 + o.sws>
15 —
Lo { i | L1 11! 1 { 1 } |’| 1
.0l 0l 10
T3¢

Fig. 1-27. Relationship between inverse of intercept, Tg, and O, e

1-36



where ie = intercept at ER = 0

and d = slope of the line from Figure‘1—26°

From Figure 1-27,

- J + N logl(o,.)
I 3f
€
‘or I = — 1 (1—i9)
€ J + N 1oglo 03f
where J = intercept at O £ = 1 kg/cm2

3

N = slope = change in l/ie for 1 log cycle of 035' which is
in kg/cm{
and from Figure 1-26,
. Lo-TI
d = — . (1-20)

1.0
Equation {1-18) may be solved for Ez and differentiated to obtain:

(i&) _ deg ) (e£> €y ) (i&) I,
€ de £ - T \e » - - .2
a a a e € a £ (1L -4dac)

a

or

_62,) | (%) ie
Y _ (22 . (1-21)
(ea €a e [1 - (1 - 'I'E) Ea]z ol

tps

Equation (1-8) may be used to eliminate Ea from Equation (1-21), afte:

first substituting _
a =

ST

o
It
w

and

1-37
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Thus:

I

_ (l ” Es)ﬁ

Ei(l - Rfii)

2 (1-22)
tps

tps
be used in an incremental nonlinear elastic analysis to compute the correspon-

The values of E and~(§kf€a)tps f;om Equations (1-13) and (1-22) mdy

ding values of -the incremehtal Young's modulus,'Et, and Poisson's ratio, vt'
from Equations (1-23) and (1-24), which were obtained by simplifying Hooke's

law for plane strain. -

(c./c
Ve T3 f 29: ?e):tps (1-23)
( 2 a)f;ps
= o 2
e = Bips (1 vt) ) (1-24)

Thesé values of E_ and v, may then be used in finite element analyses
or other analytical methods to solve problems related to lunar surface

loadings, such as p}ate'ioad tests, boot imprints, and trench wall failures.

The precediﬁg analyses'were made using data obtained from a plane-
strain test series‘onALSS No. 2 at a water content of 1.9%.. A similar test
series was performed for a water content of 1.0% to determine the effect
of cohesion (see Figure 1-7) on the stress-strain parameters, and the same
analyses were made. Many of the parameters turned out to be the same for
both water contents, but some varied significantly. The data showed that
the shift in a'étréss—strain curve due to a moisture content variation of

only 0.1% is negligible.

The stress-strain parameters for both w = 1.9% and w = 1.0% are
summarized in Table 1-1. The equations relating stress and strain are

summarized below.
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Principal Stress Difference at Failure, © af

i Lo
I= (1_—2)
].OMec ;
a_- G
_ )L _
odf = I (0.1) | (1-1)
(for 0.._ and O_ :"Ln kg/cmz)
’ 3fF daf ]
Axial Strain at Failure, eéf
a= LA - (1-5)
10)? ¢
b = ———%— (1~6)
(10)*®¢c
(o}
3f
€ = e (1-4)
af a + b 03f »
A Y
(for 03f in kg/cm )
Tangent Mbdulus for Plane Strain, E tps
"R_=b (1-11)

. N 2 O'_
By = (1 - RfD) (Eiii) Ei (1-13)
P af /-
Ratio of Lateral Sfrain to Axial Strain at Failure, (el/ga) £

I_=1U + Ve o (1-15)
R c

)]
it

Y + Ze (1-16)
c



(el/ €a)e = Tt S '10910('6'3'

Tangential Lateral Straﬁn Ratio,'(ez/s‘)\

Table

(for o

e

1)2

. (for ©

3f

93¢

3£

)

in kg/cm?)

in kg/qmzj

ajtps -

. ’J,+.N-%°g10(0\3f) |
. 3£ )

A
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 (1-14)

(1-19)

(1-22)

1-1. ‘Summary of stress-strain parameters for LSS No. 2

‘at water 'contents of 1.9 and 1.0 %.

) ' ‘ _w(%) - - w(%)
Parameter - 1.0 1.9 Parameter - 1.0 1.9

L | “3.128 1.99 2 b 0.475 0.475
M 1.165 0.815 u 1.713 1.713
Gg 0.964 0.875 LV -1.303 - -1.303
F 0.360 - 0.0362 Y -0.218 , -0.218
h 2.301 0.9675 z -0.0933  -0.0933
P 2.97 4.58 J 1.78 1.68
o C2.21 2.50 N 0.45 0.30
B4 2.06 2.06




ONE-~-DIMENSIONAL COMPRESSION CHARACTERISTICS

One-dimensional compression tests (confined compression) were
performed on specimens with different initial densities. A series with
water content, w = 1.0% and a series with w = 1.9% were performed so
that the influence of cohesion variations could be determined. The
specimens were compressed in 2.8~inqh-diameter, l1-inch-high, teflon-

lined consolidation rings.

The compression data obtained from these tests were plotted as
conventional e~log ¢ plots. WO example‘compression curves are shown
in Figure 1-28. For both the 1.0% and 1.9% water contents it was found
thaty for mathematical description, the compression curves could be
represented adequafely by two straight lines and occasionally by one

straight line in the case of high initial void ratio specimens.

A total of nine specimens were tested at various initial densities.

For each specimen the value of void ratio at compressivé stresses of
=1, 10, 40, 100, and 1000 g/cm2 were observed and crossplotted to
generate compression curves for specimens of'intermediate initial density
by interpolation. The compression curves thus obtained are shown in
Figures 1-29 and 1-30. Each curve is identified by its initial void
ratio, e, which corresponds to the void ratio of the specimen‘in the
compression ring immediately after placement. The equations of the

straight-line segments of the compression curves are

e=e -c, log @ (for 1 < 10 g/cm?). (1-25)

and

e =e ~c log 0/10 (for g > 10 g/cm?) . (1-26)

The applicability of Equation (1-25) is limited to stresses greater

than 1 g/ém2 as indicated, but this presents no sérious problem because

1-41

compression under stresses less than 1 or 2 g/cm2 was found to be negligible.

For a limited number of computations it is probably most practical
to determine the change in the void ratio that accompanies a given change
in stress by entering Figures 1-29 and 1-30 directly. The curves for

intermediate values of e, can be interpolated graphicallv. The stress
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corresponding to e, is the average gravity stress on the compression
specimen at mid-depth before application of external locad. This initial

stress averages about 2 g/cmza

For more numerous computations, it may be more practical to compute
void ratio changes with a computer program. For programming, the
parameters ei, c, elO' and =N must be evaluated and related to the

initial void ratio, ei, and water content, w.

-

e, = void ratio at 0 = 1 g/cm® (obtained by extrapolation)
Ca = Ae between 0 = 1 and 0 = 10
o - , . -
10 void ratio at O 10
Cb = Ae between 0 = 10 and ¢ = 100.

Of course only three of the parameters are independent since
e .=e -c_ ., (1-27)

It was found that the relationship between e and e, could be

satisfactorily represented as a straight line on an arithmetic plot, as

shown in Figure 1-31. The equation of the line is
e, = 1-28
1= me, + r) . | ( )

The values of m, and rl for w = 1,0% and 1.9% are shown on Figure 1-31.

The relationéhip between c, and e, was best represented as a straight
line on a log-log plot, as shown in Figure 1-32. The equation expressing

this relationship is

¢ =K e, (1-29)

The wvalues of Ka and,na for w = 1.0% and 1.9% are shown on Figure 1-32.

Because the value of elOOO’ the void ratio at ¢ = 1000 g/cmz; is much
less variable than cb, it is useful to relate elOOO and ei and calculate
“p > e e

c = 10 1000 (1-30)

b 2
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The relationship between e and ei was found to give the best

1000

straight line when ei/e was plotted versus ei on an arithmetic

1000
plot as shown in Figure 1-33. The equation is

% =¢c e, +4d
©1000 100074 1090
or
5
e = . (1-31)
1000 ¢1600%1 * Y1000
The walues of clOOO and leOO for w = 1.0% and 1.9% are shown on Figure

1-33.

In view of the fact that the influence of water content on the
compression parameters is relatively small, it is recommended that
interpolations and small extrapolations for wvalues of w other than 1.0%

and 1.9% be made on a straight-line basis. Accordingly,

w - 1.0
m = 1.06 - 0.02 (1.9 - 1.0) = 1.082 -~ 0.022 w, (1-32)
Similarly,
r; = 0.011 w - 0.041 (1-33)
ka = 0.1433 - 0.0433 w (1-34)
n_ = 4.033 + 0.667 W (1-35)
oo = 1-442 - 0.267 w (1-36)
d1000 =10.32 + 0.122 w, (1-37)

The one-dimensional compression cufves defined above are expected to
represent the void ratio-stress relationship for both the lunar soil
simulant and the actual lunar soil. One of the uses of such curves is
to compute the change in void ratio which occurs as a result of compression
of a soil layer undei its own weight. The occurrence of grévity—induced
compression implies that the soil deposit was built up in small layers and

that each layer was subsequently compressed by the weight of overlying soil.
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The void ratio-stress relationship for gravity-induced compression

can be computed for a known value of water content, w, and initial void

ratio at the surface of the deposit, e, by the following series of

steps.

1.

Compute values of m , and d from

+ Ty, kooom 1000

_ 1 a’ ©1000
Equations (1-32) through (1~37).

Compute e, from Equation (1-28)

1

el = mlei + I.‘l

Compute c, from Equation (1-29)
c =K e.na
a a i

Compute e from Equation (1-31)

1000

e,
1

+ 4

e o=
000
100 €1000%i 1000

' Compute e, from Equation (1-27)

i0 "1 a

Compute cy from Equation (1-30)

_ 10 ~ 1000

b ’ 2

Compute'the final void ratio corresponding to any desired
stress by Equations (1-25) and (1-26).
e=e -c, logo (for 1 < 0 < 10 g/cm?)

- 9 2
e10 cy log<;o> (for ¢ > 10 g/cm”) .

o
[l
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The values of e, and w are needed to generate the compression

curve as outlined in the proceding steps. Although e, is frequently

i
known, in the more general case, an element of soil may be known to

exist at some void ratio, e., and some stress O The value of e

0 0" o'
be significantly less than e, - The computation of subsequent compression

may

requires the determination of the compression curve on which the point

(GO, eo) lies. Again, this determination is most easily made by entering
Figures (1-29) and (1-30) with the values 00 and ey and graphically
interpolating to f£ind the right compression curve and the corresponding
value of e,. For values of w other than 1.0% and 1.9%, graphical inter-
polation can be made using both Figures (1-29) and (1-30) and straight-line
interpolation can be used. It may be noted that for relatively small

changes in stress satisfactory accuracy can be obtained by ignoring water

content.

For the case in which the solution is to be obtained using a computer
program, the interpolation described in the preceding paragraph may be

accomplished as follows:

1. Compute values of n&, rl, ka' na, clOOO' and leOO from

Equations (1-32) through (1-37) as in Step 1 above.

2. Solve the following six equations simultaneously for the

unknown parameters el, Ca, elO’ Cb' ei, elOOO'

= +
el mlei rl
c =k e na
a a 1
e,
e = =
1000 + d
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(for-o_ < 10)

e =e. - c, log 00 0

0 1

or

€ = 0~ % log(UO/lo) (for 00 > 10) .

‘The parameters thus obtained may be used in Equations (1-25) and
(1-26) to compute the decrease in void ratio due to increasing the stress

above the existing value, UO.

The preceding development of compression parameters facilitates the
computation of the densification caused by any one-dimensional loading
of the LSS starting from any reasonable values of initial density and
compressive stress. The same parameters can be used for similar computa-
tions for the actual lunar soil. The accuracy of these computations is
expected to be consistent with the degree to which the LSS matches the

actual lunar soil.

DETERMINATION OF DENSITY VARIATION WITH DEPTH

Stress-strain relationships for the LSS depend very heavily on initial
density or void ratio. Therefore, any detailed analysis of the stress-
deformation behavior of the LSS or the actual lunar soil requires knowledge

of the variation of initial density with depth for the soil deposit.

If densification of a soil deposit has occurred due to the weight of
overlying soil, the one-dimensional compression parameters developed in

the preceding section can be used to relate void ratio to depth. It is
possible_to,dérive analytical relationships between average density and
depth as was done for Lunar Soil Simulant No. 1 and reported in the gdetailed
" Technical Report (Mitchell ana Houston, 1970) submitted té MSFC in January
1970. However, the description of the e-log O curves as two straight lines
instead of one makes the relationships to be derived much too cumbersome.
Instead, Figures 1-29 and 1-30 were used to graphically develop the density
profiles shown in Figures 1-34 and 1-35. |
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Fig. 1-35. Variation of void ratio with depth for LSS No. 2
at w = 1.9% with terrestrial gravity.

, inches

DEPTH



1-55

The void ratio at the surface (z = 0) represents the value of
e, for each profile. Profiles for intermediate values of e, may be

obtained by interpolation.

Figures 1-36 and 1-37 show how the average void ratio, eave’
depends on the’initial voidlratio, ei, Because void ratio varies with
depth, the value of ?ave depends on the total depth of deposit. The
average void ratio for the top 15 cm (= 6 inches) was adopted for

comparison of depths of footprints and penetration resistances discussed

in later sections.

The top 6 inches Qaé chosen because it is expected to exert the
strongest influence on the footprint depth and penetration resistance.
Through interpolation, Figures 1-36 and 1-37 may be used to determine
the value of eave for the top 15 cm of any deposit of LSS No. 2, provided
that eavegis known for any depth between 15 and 80 cm and that compression

has occurred due to the weight of overlying soil. Figures 1-36 and 1-37

facilitate easy conversion of average void ratio for one depth to average

void ratio for another depth.

Similar charts were prepared for the actual lunar soil under lunar
gravity (Figures 1-38 and 1-39). These profiles were developed by
assuming ﬁhat the compressibility parameters of the actual‘lunar soil
are most closely matched by those of LSS No. 2 at w = k.9%. A water
content of 1.9% was chosen because cohesion studies have indicated that
the cohesion of LSS No. 2 at this water content is closest to the best
estimates thus far obtained_for the actual lunar soil. Since the weight
of overlying material on the moon is only about one-sixth of the corres-
pohding stress under terrestrial gravity, densification'with depth is

less pronounced on the lunar surface than on earth.

PLATE LOAD TESTS

Plate load tests were conducted on the lunar soil simulant in a test
bin 3.5 feet w%de, 4 feet deep,and 7 feet long. The wooden test bin is
made up of two 2-foot-high removable rectangular sections. These sections
may be uséd separately. Separate use of these sections allowsrthe tests to
be conducted on any depth of soil and reduces the effort of emptying and
filling the test bin. The details of the equipment and the testing pro-

cedures are discussed below.
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Soil Placement

As reported earlier (Mitchell and Houston, 1970), the placement density
depends on the height of drop, other factors being constant. This fac¢t
was utilized in the development of the placement technique. The soil
placement equipmént is shown in Figures 1-40a, 1-40b, 1-41, and 1-42.
Briefly, the'placement technique is as follows. The lunar soil simulant
is placed in a large spreader box (Figures 1-40a and 1-40b) with a
triangular cross section (Figure 1-40b). A cylindrical steel shaft'ocgu—
pies an opening‘in the bottom of the box. This shaft is capable of
rotation about its long axis , thus facilitating the removal of the soil
from the spreader box. The shaft is driven by an electric motor mounted
on the side of the spreader box {Figure 1-40a). A wooden board is
suspended from the spreader box immediately under the rotating shaft to
absorb the kinetic energy of the soil particles by breaking their height
of drop, thus yielding uniform low-density deposits. This board is raised

or removed when medium to dense deposits are required.

The spreader box is suspended from a gantry by adjustable cables.
The gantry is chain-driven by an electric motor. This frame can be moved
forward and backward, thus allowing the spreader box to deposit soil
along thé full width of the test bin. As the soll deposit builds up, the
spreader box is elevated to maintain a constant height of drop. It was
found that some vibration of the spreader box is required for a contin-
uvous downflow of soil. For this purpose, an electric vibrator is
connected to the spreader bok by a chain extending from one end of the

box to the other.

The electric motors are operated from one conveniently located control

~

panel.

The loading equipment includes a hydraulically actiﬁated loading
apparatus (Figures 1-43 and 1-44), consisting of three bellofram loading
pistons in series. The load is transmitted to the plate by a shaft that
extends throﬁgh and is rigidly connected to the three pistons. The two
lower pistons apply a load downward. The effective areas of these two

bellofram pistons are different. The smaller piston (cylinder No. 1
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Fig. 1-41. Soil placement equipment.

e
S
B

Fig. 1-42. Soil placement equipment.
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in Figure 1-43) is activated in the low lcad range to obtain higher
sensitivity, and the larger piston (in cylinder No. 2) is activated for
higher loads. Maximum loading capacity is obtained by activating both
pistons simultaneously. The third pistoh (in cylinder No. 3) is in a
reversed position and applies an upward load. It can be used to balance
the weight of any size plate and facilitates zeroing the load and posi-
tioning the plate. For loose soils, plate penetration would be excessive
if the full weight of a heavy plate were applied. The third piston
allows the gradual application of the full weight of any_plate.

The versatility of the apparatus is improved by the provision of a
relatively large piston stroke (6.25 inches). Furthermore, the hydraulic
system allows for the application of the load either incrementally or
continuously at any desired loading rate or ét a constant deformation

rate.

The plate load test equipment also includes a supporting frame, which
consists of two aluminum channels Spanning across the test box. The
heavy supporting frame acts as a reaction for the loading piston. The
supporting beam for the cylinder is connected by bolts to two channeled
aluminum columns, which aie individually supported on wheels and are
therefo#e easily moveable. The supporting beam elevation is easily
adjusted to allow testing any depth of soil deposited, in the test bin
(Figure 1-45).

Test Plates

Three different size aluminum plates were used. All plates have

a length—to;width ratio of 5:1, and the following dimensions:

1 X 5 inches, 1 inch thick
2 X 10 inches, 2 inches thick
4 X 20 inches, trussed plates 12 inches thick at center, tapering

to 2 inches thick at the ends.

Test Procedure

Three different soil densities ranging from loose to dense were

used for the plate load tests.



The low-density soil deposit was obtained using a soil free-fall of
about 2 inches.- The free~fall for the medium density soil deposit was
26 inches. The dense soil deposit was obtained by first depositing the
soil using a 26~inch free-fall in 4-inch lifts. Then a 3.5-by-2.0-ft
board l-inch thick, was placed on the surface of each 1lift. The soil
was densified by vibration using a rotary vibrator placed on the board

for a period of 2 minutes.

Vibration rather than static load alone was used for densification
for the following reason. If a static vértical stress'large enough to’
achieve the same densification as for vibration had been applied, the
upper layer of soil would have been'effectively over-consolidated when
the stress was removed. Abnormally high horizontal normal stresses would
have been "locked in" if this procedure had been followed. The "locked
in" stresses are expected to be lower for vibratory compaction than for
static compaction. Figures 1-46 and 1-47 show the void ratio and the

moisture content vs depth for three test bins.

Each test bin was large enough to allow testing of all three plates.
For each test series, at least three tests were performed with the
smallest plate and two tests with the medium pléte. In general, the
plates were aligned perpendicular to the long axis of the test bin and
spaced sé as to minimize test bin side effects and the influence of
other test plates. The degree of reproducibility for tests with the same
plate at different locations within the test bin indicates that side
effects were negligible and that horizontal variations in soil density
were negligible. The load applied to each plate was measured with a
very sensitive load cell, and the vertical settlement was measured by
a 1/1000-inch dial gage. A typical test setup is pictured in Figure
1-48. Figure 1-49 shows the imprint in the loose soil deposit of the
4-by-20-inch test plate.

Basic Test. Data

1-66

The results of the duplicated tests for each test series were in very

good agreement. Figures 1-50, 1-51, and 1-52 show the results of each

test series.
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The most striking feature of these data is the large deformation
that occurred because of the high compressibility of the soil. The
near~lineérity of the stress-deformation curves and estimates of bearing
capacity indicate that the bearing capacity was not exceeded, although
deformation as high as one to two plate-widths was observed before
loading was discontinued. A significant discontinuity in the curve for
the l-inch plate at about 20 psi on the dense soil deposit of Series
No. 3 was observed. This discontinuity corresponded to the development
of some bulging around the plate. Plate load test data can be used as
a basis for evaluating the applicability of different analytical methods
for the descriptign of the stress-deformation behavior of lunar soil.
The deformations of the plates on the 1SS and on the actual lunar surface
may be computed by several methods, including the Finite Element Method

and the Stress Path Method (SPM) (Lambe and Whitman, 1969).

As a first step in the analysis of the plate load test data, soil
deformations under the 4-inch plate were computed by the SPM for various

initial soil densities. The major steps in the SPM computation are as

follows.

The zone beneath the plate was subdivided into five elements as shown
in Figure 1-53., The bottoonf Element 5 was taken at a depth of 10B ox
at the bottom of the test bin, whichever was smaller. The vertical.
strains were computed at the center of each element and multiplied by

the element thickness to obtain the total settlement under the plate.

The increases in vertical and horizontal normal stresses at various
points under the plate were computed using a theory of elasticity
computer program entitled HSPACE (Lysmer and Duncan, 1969). The results
of these computations are shown in Figure 1-54. The average of the
centerline and one/sixth point stresses from Figure 1~54 were used in

the computations.

Each element was assumed to exist under K, conditions before plate
loading, with K, = 0.5. Schematically, the initial stress state of each
element is represented by point A in Figure 1-55. Point A is the point

at the top of the stress circle which represents the stress state for

each element. The increases in vertical and horizontal normal stresses
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from Figure 1-54 were used as changes in major and minor principal stresses,
and a new final stress state, represented by point C in Figure 1-55, was
determined for each element. The vertical strain for each element cor-
respondiné to stress path A-B~C- was computed. Path A-B is along the
K,~line and the compression is therefore one-dimensional for this segment.
The vertical strain for path A-B was computed using the one-dimensional
compression parameters presented in an earlier section. Path B-C repre-
sents loading under constant continuing pressure. Therefore, the plane
strain stress-strain parameters presented in an earlier section were

used to compute the vertical strain for this segment of the stress path.

A comparison between the measured and computed plate deformations
is shown in Figure 1-56. The agreement is fairly good, especially in the
range of void ratio of interest for the lunar surface (from about 0.7

to 1.0).

The SPM was also used to compute the plate deformation for the same
contact stress under reduced gravity for various densities. The effect
of reduced gravity is to lower the initial vertical and horizontal normal
stresses, which results in significantly higher stress levels in some
elements. The ratio of the deformation under full gravity to the defor-
mation under 1/6 g, is plotted in Figure 1-57. The curvé in Figure 1-57
indicates, for example, that for an average void ratio of 0.8, the 4-inch
plate deformation under 1 psi and full gravity would Be about 85 percent
of the plate sinkage for the same stress and same soil on the lunar
surface.

The data in Figures 1-56 and 1-57 have several applications. For
example, if a plate load test were performed on the lunar surface, the
deformation could be multiplied by a value of Ry from Figure 1-57 to
to obtain the estimated deformation for the same soil under full gravity.
A first-trial estimate of void ratio would be used to enter Figure 1-57
to get a value of RA' This value of RA could then be used to calculate
plate sinkage under full gravity. The value thus determined could be
used to enter a correlation between plate load sinkage and void ratio
(e.g., the solid line in Figure 1-56) to obtain the corresponding void
ratio. If the void ratio thus estimated differed significantly from the

assumed void ratio used to enter Figure 1-57, the procedure could be
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repeated with an improved estimate of void ratioc. From the void ratio,
other parameters such as strength, stress—strain, and compression could

be estimated as described in the preceding sections.

A similar analysis, although considerably less precise, can be made

from astronaut boot imprint data, as described in the next section.

BOOT IMPRINT TESTS

A series of boot imprint tests were performed on LSS No. 2. It was
anticipated that footprints made by astronauts during Apollo missions

might be analyzed in a manner similar to that of the plate load tests.

The boot imprint tests were performed using the same procedure as
was used for LSS No. 1 and described in detail by Mitchell and Houston
(1970). Test results obtained using the new large test bin (3.5 X 7
inches) did not appear to differ significantly from those obtained in

earlier tests using a smaller test bin (2 X 2 inches).

The relationships between void ratio and depth of footprint for
contact stresses of 4 psi and 1 psi are shown in Figure 1-58. The contact
stress for a suited astronaut with his full weight on one foot is about
1 psi in the lunar gravitational field. In Figure 1-59, the 1l~psi curve
is replotted as a dashed line and the predicted curve for the actual
lunar surface appears as a solid line. The predicted curve was determined
by applying values of the plate-load reduction factor, RA , from Figure
1-57. The RA values from Figure 1-57 were for a 4-inch-wide plate with a

contact stress of 1 psi.

While precise dete;mination of footprint depths from-Apollo 11 and
12 photographs is difficult, a statistical survey was made from available
photographs and, although a few footprints greater than an inch in depth
. were observed, most of the values fell between 0.1 and 0.5 inch with an

average of about 0.25 inch.

If Figure 1-59 is entered using a footprint depth of 0.25 inch, an
estimated value of eave for the top 15 cm of 0.85 is obtained. The range

in e ve for footprints ranging from 0.1 to 0.5 inch is from 0.74 to 0.94
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A comparison of this void ratio estimate and these obtained from

Apollo 11 and 12 core tubes is given in Table 1-2.

?able 1=-2,

Comparative void ratios.

Best. estimate Density Corresponding Correspo?dlng
. or . range in
Data Source . for range in :
average value 6 =3.1 void ratio density for
of void ratio 5 ) » ' Gs =3.1
Apollo 11 0.94 1.60 1.00 to 0.88 1.55 to 1.65
core tubes?*
Apollo 12
core tubes** 0.72 1.80 0,94 to 0.55 1.60 to 2.0
SPM bootprint
analysis 0.85 1.677 0.94 to 0.74 1.60 to 1.78
described
herein
*Costes et al. (1970)
**Scott et al. (1971)

The comparison shows that the density estimate obtained from the

SPM-plate load analysis is well within the wide range obtained from Apollo

12 core tubes and is slightly higher than the Apollo 11 core tube range.

PENETROMETER TESTS

Penetration resistance tests are likely to be an efficient and

effective means by which astronauts may gather data leading to the assessment
of lunar surface soil properties. Such tests are planned for future Apollo

missions.
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An important application of penetration resistance data may be in
the trafficability analyses needed for range prediction for lunar roving
vehicles. It is also anticipated that penetration resistance can be
correlated with density. In addition, abrupt changes in the slope of
the stress-penetration curve may be used as indicators of nonhomogeneities
in the soil profile. An example of this type of indication is shown in
Figure 1-60. The curve in Figure 1-60 was obtained with the standard

WES cone penetrometer.

Considerable effort was devoted to the development of a penetrome;er
which could be used on the lunar surface. The done and shaft size and
configuration chosen were that of the Waterways Experiment Station, a
cone penetrometer shown in Figure 1-61. The alternate black and white
sections on the shaft were added to provide a visual measure of the depth

of penetration, either by direct observations or from photographs.

A proving ring and dial gage were chosen for load measurement. The
proving ring was mounted in an extension-type handle [Figure 1-62(a)l.
The plate is 1 inch wide, 5 inches long, and 1/4 inch thick. All
attachments can be used with the extension handle and the proving ring

dial gage can be used to measure force.

The 1/4-inch-diameter rod protruding out of the top of the extension
handle passes through the hollow extension handle and behind the dial
gage to the bottom of the proving ring. This rod may be used for hammering,
if necessary, without damaging the dial gage. The assembled penetrometer

[Pigure 1-62(b)] is shown in testing position in Figure 1-63.

It was proposed that data be obtained by the astronauts on the lunar
surface by performing the test in front of a sequence camera. From the
photos, the depth of penetration and the dial gage can be read for
determination of the load. This method of data acquisition was inveétigated
in the laboratory by taking a rapid series of snapshots (rather than
continuous photography by sequence camera) during the penetration test.

The stress-penetration curves obtained in this way were equally as con-

sistent and reproducible as were the curves obtained by direct observation.
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An example stress-penetration curve is shown in Figure 1-64. The
position of the feet of the man performing the test with respect to the
penetrometer has an effect on the results. Therefore, the position
indicated in the upper left corner of Figure 1-64 has been adapted as
standard. The penetrometer was advanced at the rate of about 1 inch per
5 seconds to avoid the development of pore air pressures; however, a .

penetrometer on the lunar surface would be advanced at a greater rate.

A series of penetration resistance tests was performed on LSS No. 2
using the cone penetrometer. The slope of\the stress-pehetration curve,
G, is plotted versus the average void ratio for the top 15 cm in Figure
1-65. One of the uses of the data in Figure 1-65, in connection with
trafficability studies, is that of comparing the G—eave relationship of
any new proposed lunar soil simulant to that of LSS No. 2. Because
available data indicate that LSS No. 2 is a good simulant of the actual
lunar soil, Figure 1-65 can be used as an indicator of the suitability of

any new soil that might be used for LRV simulation studies.

Figure 1-65 provides the relationship between G and e ve for terrestial
gravity. The variation of G with eave for lunar gravity is also of great
interest for trafficability analyses and other property studies. An estimate
of the effect of reduced gravity on G value was obtained by applying the

following bearing capacity equation to the penetrometer.

by
T g + ' -
91t S NYSY + chsC q Nqsq R (1-38)

where Dt = unit ultimate bearing cgpacity
Y = soil unit weight
b = width of loaded area
c = soil cohesion
q' = surcharge, 4y
s. = shape factor (1 - 0.3 b/L)
s = shape factor (1 + 0.2 b/L)

s = shape factor (1 + 0.2 b/L)
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Ny’ Nc, Nq = bearing capacity factors, dependent on the
soil friction angle, ¢
d = depth of loaded area
L, = length of loaded area.

The penetrometer has a diameter of about 0.8 inch which was used
for b. A value of b/L = 1 was used for all computations. For each set
of computations a soil profile consistent with terxrestrial gravity was
chosen from Figure 1-35. The bearing capacity was computed for a depth,
d, equal to 0 and 15 cm. The void ratio for d = 0 and d = 15 cm were
taken from Figure 1-35 and used to enter Figures 1-7 and 1-8 to obtain
values for c¢ and ¢. Meyerhof's (1951) charts were used for the bearing

capacity factors.

~For a compressible soil that may experience local shear, the bearing
capacity is usually computed by using reduced strength parameters c. and
¢r, so that.

Q
li

. k%sc (1-39)

-
i

Arc tan(k,g,S tan ¢) . (1-40)
The value of kls varies from 1 to 0.67, depending on soil compressi-

bility. A value close to 0.67 is indicated for LSS No. 2 because no

bulging was observed around the penetrometer during testing. A value of

kks = 0.75 was used for all computations.

The stress-penetration gradient, G, was taken as the change in D1t
between d = 0 and 4 = 15 cm divided by 15 cm. Values of G obtained in

this way were plotted versus eave for the top 15 cm.

The results are shown in Figure 1-66, where measured and computed
values are compared. The close agreement indicates that the bearing
capacity Equation (1-38) provides a basis for estimating G wvalues. If
vso, then the same relationship may be used to investigate the probable

influence of gravity on G value.



1-92

*A1LAeub :E, J43pun g *ON S$S7 404
san|eA 9 pajndwod pue padnseauw 40 uostaedwo) 99-1 “bij

Wisd * o
00! of _ r
rrrr T 1 IR I 1 IR L] I I
B (8€-1) NOILVNDI ALIOVdVD |
\ ONI¥V3E WON4 Q3LNdNOI o
i SINIVA 9 G3IYNSVINe
/
- & -
@

it

§

i

| .

(O

rA

wogl dol ¥os °MP;



1-93

The bearing capacity computations were repeated for reduced gravity
using the same factors, except that Y/6 was used instead of y for the
density. A void ratio~-depth profile more consistent with the lunar

surface (as given in Figure 1-38) was used.

The G values obtained in this way were used to determine the ratio,
Rp, of G under reduced gravity to G under terrestrial gravity with the
result shown in Figure 1-67. These values of the reduction factor, RP,
from Figure 1-67 were then applied to the measured terrestrial G values
(shown by the lines in Figures 1-65 and 1-66) to obtain the predicted G

values for the lunar surface shown in Figure 1-68.

It is of interest‘to note that the estimate of eave = (.85 from the
boot imprint analysis discussed in the previous section yields a G value
of 2.5 psi/inch. On thevother hand, Apollo 12 core tube data analysis by
Scott et al. (1970) gave a density estimate of 1.8 + 0.2 g/cms'for the
top 30 c¢m, which corresponds to an eave (top 15 cm) of about 0.722 with a
range of 0.55 to 0.94. A value of eave = 0.722 indicates a G = 5.5 psi/
inch. Thus, a range 2.5 < G < 5.5 psi/inch is indicated by these two

estimates of average density.

CORE TUBE STUDIES

Core tube tests were performed to investigate the efficiency of the
core tube sampler used on Apollo 11 and 12 landings and to compare the
results to those obtained using a newly designed thin-wall tube. The

tests were conducted in a 2 by 2 by 3 inch bin using LSS No. 2 placed at

various densities.

The sampler used on Apollo 11 and 12 has a split core barrel with an
inside diameter of 0.75 inch and a wall thickness of 0.125 inch. The
;plit‘barrel is held together at top and bottom, respectivelyl'by a
threaded handle attachment and the bit (see Figure 1-69). This sampler
was originally supplied with two interchangeable bits. The least efficient
of these bits (Figure 1-69) has a 15-degree inward flare, thus compressing
the soil as it enter; the core tube. The better of the two bits flares

outwards, thus maintaining the 0,77-inch inside diameter of the tube.
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The revised sampler is of solid-shell thin-wall design with the
bit being the sharpened leading edge of the core tube wall. It has
an inside diameter of 1.92 inches and a wall thickness of 0.04 inch.
The barrel length is about 12 inches. The revised core tube sampler is

shown in Figures 1-62(a) and 1-70.

This sampler was driven info the soil by pushing as shown on Figure
1-71. The original samplers were advanced by pushing,augering, and
hammering. After inserting the samplers a given distance (typically
10 to 11-% inches), the amount of soil in the tube was ﬁeasured prior
to withdrawing the sampler. The ratio of the amount of soil present in
the tube after insertion to the depth of sampling as measured from the
original soil surface was used as the standard of comparison between the
sampler types. This ratio is termed the "sampling ratio® and is expressed

as a percentage.

The values of samplihg ratio obtained during testing are summarized
in Table 1-3. The values for the less efficient inward flare bit are
listéd first for the four methods of sampler advancement. The sampling
ratios for the inward flare bit range from about 7 to 58 per cent, depending
mainly on the method of advancement. For this bit, hammering yields the

highest sampling ratio.

The tabulated sampling ratios for the more efficient outward flare
bit as listed in Table 1~3 range from 63 to 84 per cent, depending mainly
on the dry unit weight of the lunar soil simulant tested. It is obvibus
from these values that this type of bit yields more satisfactory results

than those for the inward flare bit.

The sampling ratio values for the thin-wall sampler range from 85 to
greater than 99 per cent. These values are significantly better than
those obtained using the Apollo samplers, and can be attributed to the
greatly reduced ratio of sampler cross section area to sample cross

section area because of the thinner walls.

It should be mentioned that some difficulties were encountered in
retaining the sample in the sampler upon withdrawal, using both the Apollo
and the thin-wall samplers. This difficulty is ascribed to the differences

between the lunar and terrestrial environment (vacuum, reduced gravity).
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Table 1-3. Summary of "sampling ratios" (%) for LSS No. 2.

Apollo core sampler

Dry unit weight, g/cc i.67 1.79 1.88
Moisture content, % 1.24 1.43 1.23
Void ratio ' 0,725 0.61 0.53

Inward flare bit

1. push 9.1 7.5 11.4
2. push & auger 9.6 7.3 14.9
3. hammer 58.2 42.3 55.7
4. hammer & auger 44 .8 38.0 55.9

Outward flare bit

1. push 63.2 64.6 84.4
2. push & auger 66.6 59.0 78.7
3. hammer : 73.3 69.2 78.2
4. hammer & auger 69.8 66.0 82.5

Thin-wall sampler

Dry unit weight, g/cc 1.51 1.75 1.88

Moisture content, % 1.30 1.30 1.30
Void ratio 0.905 0.642 0.53

Integrally-cast bit

push 85.0 97.3 99+
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It was therefore impossible to measure reliably the dry wnit weight of

the sampled soil in order to evaluate the compression during sampling.

It should also be noted that the force required to push the core
tube sampler into the soil became quite large for very dense soil deposits.
For this reason, a sampler somewhat smaller than the 2~inch~0.D. sampler

described herein has been recommended.

Baséd partly on the recommendations derived from this study, the
Apollo Spacecraft Program Office has authorized the redesign of the
Apollo 11-12 core tube for subsequent Apollo missions. Requirements for
the new sampler are as follows (from MSC Configuration Control Board

Directive, May 14, 1970):
Requirements

1. Area ratio 10%
2. Integral bit
3. Area of bit: 1 to 2% less than inner area

4, Piston type follower

No resistance during sampling

Lock capability after sampling

5. Core extraction compatible LRL processing
6. Interface with existing HTC with minimum impact

7. Capability of retrieving double core

Note:

Methods of core sample removal; i.e., extrusion, split-tube
must be prototyped for evaluation to establish most satis-

factory method.
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CONCLUSTIONS

1.

Iunar Soil Simulant No. 2 appears to be a good match for the

actual lunar soil in terms of gradation, penetration resistance,

and other physical properties.

The conclusion reported in the Final Report of January 1970
{(Mitchell and Houston, Vol. I) regarding the‘sensitivity of lunar
soil properties to void ratio is reinforced by studies on LSS

No. 2. These studies indicate that most soil properties of

interest can be predicted from knowledge of the void ratio.

1

Strength, stress-strain, and one-dimensional compression
parameters of the lunar soil simulant have all been related to
void ratio in both equation and graphic form. One-dimensional
compression parameters have been used to estimate density

profiles for both terrestrial gravity and lunar gravity con-

_ ditions. These profiles show that the increase in density with

depth should be less pronounced for the lunar surface than for

the same soil on earth.

One-dimensional compression parameters and plane strain

stress-strain parameters were used in a stress path method of

‘analysis to compute the soil deformations under a 4-inch by

20-inch plate acted on by a l-psi vertical stress for several
initial void ratios. The computed values were compared with
the measured plate load sinkagé and the agreement was fairly
good, as shown in Figure 1-56. The stress path computations
were repeated for reduced gravity, and the gravity reduction
factors shown in Figure 1-57 were obtained. These factors
were used to relate footprint depth to void ratio in Figure
1-59. Estimates of footprint depths from Apollo 11 and 12
photos gave a range of 0.1 to 0.5 inch for most values, with
an average value of about 0.25 inch. ‘This footpriht depth
corresponds to an estimate of e, ve for the top 15 cm of 0.85
on the lunar surface. This corresponds to an in situ density

of about 1.7 gm/cm®, for G = 3.1.
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An estimated value of e = 0.85 corresponds to the following

strength and stress-strain properties.

c = 4.3 g/cm® = 0.06 psi

¢ = 40° (average value for a range in confining pressures)

0.875
: o
G.. = 0.41 3£ for o__ in kg/cm’
daf 0.1 3f
g
- 3f , .
Eaf = 0 00548 F 0.0348 7., for O,¢ in kg/cm
g
E o = (1~ 0.475 D)2 (—f—f—)z.%
P af
€ o
2y 3f , 5
(-;) = 0.606 0.297 log;, (O.l) for 03f in kg/cm
a
£
I, = = for 0., in kg/cm?
€ 1.68 + 0.30 logy, 0
: €,/€ ) I
(€2> ( ¥"a) e
ECA T — ,
€ (1-1I)D

2.06(1 - 0.475D)

5. The plate load test results indicated that no general shear
failure occurred, except perhaps in the case of loading by
the l-inch plate on the very dense soil. "However, the data
showed (see Figures 1-50, 1-51, and 1-52) that the sinkages

were quite large, ranging up to 1 and 2 plate-widths.

6. A bearing capacity equation was used to estimate the G value
for LSS No. 2 under full gravity and vielded good agreement
with values measured directly with a penetrometer when local
shear strength parameters were used, as shown in Figure 1-66.
A similar set of computations for reduéed gravity led to the
penetrometer reduction factors, Rp, shown in Figure 1-67,and

the predicted relationship between G and void ratio for the



lunar surface shown in Figure 1-68. Figure 1-68 indicates that G may

range from 2.5 psi/inch (for the estimated e ve = 0.85 from the boot

imprint analysis) to 5.4 psi/inch (for the estimated e ve = 0.73 from

Apollo 12 core tube density analysis).

RECOMMENDATIONS

1.

Good measurements of in-place density on the lunar surface soil
are needed. The core tube sampler should be modified by greatly
reducing the area ratio in an effort to obtain samples with

less disturbance and more representative density. Other types

of in-place density tests should also be considered.

Measurements of G value by the astronauts during Apollo missions
are needed as soon as possible. These penetration resistance
measurements should be made using either a penetrometer of the
type described herein, or with another type of load and pene-
tration measurement deﬁice. The cone and shaft should be the
standard WES configuration (i.e., 30-degree apex angle and
0.5-square-inch base area), and a standard placement of feet

and penetrometer for testing should be adopted.

Plate load tests should be performed on an Apollo mission as

soon as possible. The studies reported herein indicate that
useful information pertaining to void ratio and other mechan-
ical properties can be derived from plate load tests. Thevplate
load tests could be performed by attaching a plate to the
penetrometer extension handle, or by having the astronaut

lower a large (4-inch) plate to the surface and step on it with
his full weight. Photos should be taken before and after

loading.

Analyses of the plate load test results reported herein should
be continued using both the stress path method and the finite
element method. Analysis by the finite element method, though

not complete, is well under way at present.
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Values of G should be determined for a good lunar soil simulant
under conditions of reduced gravity. Although the penetrometer
reduction factors, Rp, obtained in this study by the bearing
capacity equation appear to be reliable, a high degree of
certainty can only be obtained by making measureﬁents in a

1/6 g aircraft simulation.

Additional strength and stress-strain tests should be performed
with confining pressures as low as 0.0l kg/cmz, if possible.
The 1owést confining pressure that could be uséd in the study
described herein was 0.05 kg/cmz. Although the extrapolation
to lower confining pressures used may well be reliable, the
extent of extrapolation necessary was quite large. Very small
specimens will probably be required because the weight of
specimens of conventional size produces significant internal

stress.
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Intercept of e, = constant lines at 03 =0 kg/cm2 in
O,¢/€.¢ = U3¢ POt
Intercept of €_/D - € curve at E; =0

Width

£

Slope of :F i_cozftant lines in Osf/eaf,- Os¢ plot
Slope of Ea/D - ea curve

Cohesion, gm/cm® or lb/in 2

Change in e between 0 = 1 and 0 = 10 gm/cm® for confined
compression curves

Change in e between 0 = 10 and 0 = 100 gm/cm2 for confined
compression curves

Reduced cohesion value,Agm/cm2 or 1b/in.?

Slope of ei/e1000 - eicurve

Depth )

Slope of 03f2= a constant lines in ez/ea - 82 plot for
03f in kg/cm

Intercept at e, = 0 of ei/e - ey plot

1000
Stress level, Od/O'df

Stress level at failure = 1 _

Principal stress difference at failure of hyperbolic,
normalized stress-strain curve

Void ratio

Pre-shear void ratio

Initial void ratio

Void ratio at o' = 1 gm/cm2

10 gm/cm2

1000 gm/cm?

Void ratio at ¢

Void ratio at ¢
Initial tangent modulus of stress-strain curve
Initial tangent modulus of normalized hyperbolic stress-strain

curve = 1/8

" Incremental Yoﬁng‘s modulus

Tangent modulus of stress-strain curve for plain strain

condition
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- Slope of e, = constant lines in log O

Value of a at e = 0 in log a - e, plot
Slope of stress—-penetration curve, psi/in for cone
penetrometer tests

af - log 03f plot

Specific gravity
Slope of log a - e curve

Intercept of e, = constant lines at g, 0.1 kg/cm2 in

£

log odf - log 03f plot

Intercept of e = constant, lines at Osf = 0.1 kg/cm2
in (Ez/ea)f - log 63f plot

Intercepts of Gsf = 0 lines at Eﬁ =0,

."""_"' . 2

in 82/ ea 82 E}ot, for gaf in kg/cm

Intercept of l/I8 - 03f curve at 03f = 1 kg/cm2

Value of Ei at 0, = 1.0 kg/cm2

Intercept at e, = 1 of log ¢, - log e, plot
Reduction factor

Value of T at e, = 0 in ec - log I plot
Length of loaded area

Lunar soil simulant

Slope of e, log I curve

1
Slope of l/fg - g

Slope of'e, - e, curve

3¢ Curve
Bearing capacity factors

Slope of log Ei - log 03f curve
Slope of log c, - log ei curve

.Value of b at e, = 0 in log b - e, plot

Atmospheric pressure
Inverse of the change in ec for one log cycle change in b

Unit ultimate bearing'capacity

Surcharge

Failure ratio: Df/th

Penetrometer G-value reduction factor for reduced gravity
Gravity reduction factor, for plate loading

Intercept at e, = O ofe - e, curve

Change in (el/ea)f for one log cycle change in g, where

£

. . 2
03f is in kg/cm
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Shape factors for bearing capacity equations
Intercept at eC = 0 of IR - ec curves

Slope of IR - eccurves

Water content

Waterway experiment station

Intercept at ec = 0 of § ~ ec curves

Slope of S -~ e_ curves
Settlement

Axial strain

Axial strain at failure
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Chapter 2.,  DETERMINATION OF IN SITU SOIL PROPERTIES
UTILIZING AN IMPACT PENETROMETER

J. B. Thompson and J. K. Mitchell

INTRODUCTION

Due to the widespread distribution of major deposits of soil and
"soil-like" material both terrestrially and on extraterrestrial bodies, -
such as the moon and probably Mars, soil mechanics and foundation
engineering aspects of space explorations must be considered early in
mission planning. The solution process of the majority of soil mechanics

problems can be divided into two phases:

1. The determination of the in situ properties‘of the soil deposit,

and

2. The engineering analysis of the probable effects of operations

to be performed on the soil.

Both phases of this solution process have been given considerable study
by workers in soil mechanics and foundation engineering and numerous

solution techniques have been developed.

The p&esent study is concerned‘with the determination of in situ soil
properties by remote means. Perhaps the simplest technique for accomplishing
this goal is the educated interpretation of wvisual or photographic observa-’
tions of the s0il surface. An evaluation of several variations of this
technique has been presented by Mitchell et al. (1969, 1970a, 1970b)
including some estimates of lunar soil properties determined in this
manner. With reference to the moon, the two surface features that seem
to be most promising for this type of study are the boulder tracké
and secondary impact craters. The in situ soil properties considered
in the method of analysis of boulder tracks presented by Mitchell et al.
(1970b) are the cohesion, friction angle, and density. The magnitude of
one of these properties can be calculated after assuming values for the
other two. The analysis of secondary impact craters (Mitchell et al.,

1969) does not include commonly recognized soil properties but other
parameters to which these soil properties can be correlated. Many of

the limitations on the analysis of secondary impact craters apply



equally to the analysis of impact penetration tests. The interpretation
of secondary impact craters, however, does require several additional
assumptions. The second technique for determining in situ soil properties
is the deployment of equipment designed to test the soil deposit. Several

such devices have been considered for use on the lunar surface including:

1. An automated soil scoop,

2. Static penetrometers of various shapes and sizes,
3. Soil corers and samplers,

4. Various types of static shear devices, and

5. Impact penetrometers of various shapes and sizes.

Although the present study has not progressed to the point at which a
comparison of the relative merits of the impact penetration test and
the other techniques and devices can be made, the impact penetration
test possesses two obvious advantages which should be mentioned.
First, the unit would not necessarily require provisions for a soft
landing on the moon. Only the impact penetrometer need contact the
soil surface and telemetry could be used for data transmission. The
second advantage is that the penetrometer along with any necessary
instrumentation would likely compose a relatively small, inexpehsive
package ecbnomically allowing extensive deployment of these units over

the area or areas of concern.

Since the value of the impact penetration test lies in its ability
-to determine in situ soil properties, the primary purpose of this investi-
gation is to evaluate which soil properties can be determined from the
penetrometer output and to what accuracy. It would be impossible to
study all combinations of penetrometer, environmental, and soil wvariables
influencing impéct penetration within reasonable time and monetary
constraints. Consequently, this investigation is limited to cone~tipped
right circular cylinders impacting normally at velocities up to 200 fps

onto a dry granular soil target.

The organization of the body of this report generally follows the

approach we have taken to the problem. First, an extensive literature



review was conducted to determine the state of the art of impact penetra-
tion and to provide a basis for planning the remainder of the study.
Following this literature review, the feasibility of approaching this
problem theoretically was evaluated. It was concluded that a thedretical,
approach is not justified at this time. Next, an examination of the
existing empirical analytical expressions relating the dependent and
independent wvariables of the impact penetration problem was conducted.
This examination emphasized an evaluation of the relative and absolute
merits of these expressions and the determination of probable independent
variables requiring additional experimental investigation to allow .
extrapolation of terrestrial test results to the lunar environment.

After identifying the independent variables requiring further experi-
mental study, an experimental program was designed. At the present

time, a conceptual design of all equipment necessary for conducting the

testing has been completed.

LITERATURE REVIEW

An extensive review of the published literature on impact penetration
has been completed. A rather detailed summary of this literature review
is presented below because we believe that prior evaluations of the
state of the art are lacking in both scope and detail.

Considerable effort has been devoted to the study of impact penetration
problems involving a broad spectrum of projectile and target materials and
shapes. A major portion of this research dealing with armor penetration
by projectileés travelling at ballistic velocities is not relevant to the
problem under consideration and will not be discussed in this report. 1In
this presentation, previous research on the dynamic penetration of soils
will be divided into three categories.

1. Theoretical studies designed to develop theoretical, analytical

relationships between the dependent and independen£ variables
of the impact penetration problem, and

2. Experimental investigations instigated primarily to develop

a qualitative understanding of impact penetration (éonsiderable
test data and some analytical expressions have also resulted

from these studies), and



3. Statistical studies designed to develop empirical, analytical
relationships from the combined test results of several experi=

mental programs.

Theoretical Investigations

Investigations of this type have been conducted to develop analytical
expressions relating the dependent and independent variables of the impaci
penetration problem. These relationships are based on the concepts of
theoretical mechanics and appropriate assumptions. The investigations of
this type are Summarized in Table 2-1, which indicates the author (s},
theoretical bases, the resultant equation(s), and the assumptions and

conclusions of each investigation.

Experimental Investigations

Investigations of this type have usually been designed to develop
a qualitative understanding of impact penetration for a certain limited
combination of penetrometer and soil variables, In a few of these
studies, analytical expressions have also been developed. Previous
investigations of this type are summarized in Tables 2-2 and 2-3. 1In
Table 2-2, the author(s), soil(s), penetrometer shape(s) and dimensions,
impact velocity(ies), impact angle(s) (the acute angle between the normal
to the soil surface and the velocity vector of the penetrometer), aﬁd
the air pressure (measured at- the soil surface) of each study are given.
All penetrometers had zero rotétional velocity and moved in a plane
normal to the soil surface. The principal conclusions from each study are

summarized in Table 2~3.

Statistical Investigations

Statistical investigations have been conducted to develop empirical,
analytical relationships between the dependent and independent variables
of the impact penetration problem. These studies utilized the extensive
test results generated by the experimental programs presented above.
Previous investigations of this type are summarized in Tables 2-4 and 2-5.
In Table 2-4 the author(s), soil(s), penetrometer shape(s) and dimensions,
impact velocity(ies), impact angle {s), and the air pressures of the exper-
imental programs from which the test results were taken are presented. The
equations derived from these studies are shown in Table 2-5 along with the

significant conclusions of each study.
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Fig. 2-1. Scott (1962) Solution 1 penetration mechanism.
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Fig. 2-2. Scott (1962) Solution 2 penetration mechanism.
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Fig. 2-3. Soil rheological model proposed by Schmid (1966)
(G], GZ’ Ns and n, are soil spring and dashpot constants).

(K1 )

rrr7z

Fig. 2-4. Soil rheological model proposed by Tsai (1967)
(G] and n are soil spring and dashpot constants).
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QUALITATIVE STATE OF THE ART

A considerable amount of qualitative information on the impact
penetration problem has resulted from the numerous experimental studies

presented in the Literature Review. The effect of various independent

variables on penetrometer output and soil-penetrometer interaction is
summarized below.

Effect of Penetrometer Characteristics

1. Weight

An increase in weight yields an increase in total penetration,
an increase in rise time and total duration time, and a decrease

in measured decelerations.

2. Diameter

An increase in diameter yields a decrease in total penetration,
a decrease in rise time and total duration time, and an increase

in measured decelerations.

3. Nose Sharpness

(a) An increase in nose sharpness yields an increase in total
penetration and an apparent increase in soil-penetrometer

contact area and pressure.

(b) The occurrence of an acceleration-time peak is less likely with

sharper noses.
' : ~
(c) A soil nose forms more frequently on blunt tipped penetrometers.

4. General

The sensitivity to in situ soil properties is greatest for low

weight, large diameter, and moderately sharp nosed penetrometers.

Pre-Impact Flight Parameters
1. Penetrometer Velocity

(a) An increase in impact velocity yields an increase in total
penetration, an increase in measured decelerations, and a

decrease in rise time and total duration time.



(b} A given soil layer will produce higher measured decelerations

for higher instantaneous velocities.

2. Impact Angle

(a) An increase in the impact angle yields a decrease in total
penetration, a decrease in measured decelerations, and an

increase in rise time and total duration time.

(b) The impact angle has a considarable effect on the existence

and magnitude of an acceleration-time peak.
Effect of Soil: Parameters
1. Soil Type
(a) Clay
i. Smooth acceleration-time signature.
ii. Low measured decelerations.

(b) silt

i. Relatively smooth acceleration-time signature.

{c) sand

_i. Rough acceleration-time signature consisting of high
frequency variations about the average signature and

"Jumps" in the signature.
ii. Air blast is frequently observed in dry sands.
iii. Sand is comminuted during penetration.
(d) Gravel
i. Larger measured decelerations than in sand.
ii. Rougher acceleration-time signature than sand.
2. Density

An increase in soil density yields an increase in measured
decelerations, a decrease in total penetration, and a decrease

in rise time and total duration time.



Degree of Saturation

Impact forces will increase considerably as the percent by
weight of solids increases and will increase to a lesser extent

as the percent by weight of water increases.

Particle Specific Gravity

An increase in GS yields an increase in the inertia component

of the soil resistance.

WES Cone Index

An increase in the WES Cone Index yields a decrease in total

penetration.

Effect of Air Pressure

1.,

Possible Effects

(a) A change in the excess pore air pressures depending on the

volume change tendencies of the soil mass.
(b) A change in the nature of grain contacts.

(c) A change in soil inertial resistance due to a change in both

the nature of grain contacts and the resulting soil mass affected.

(The actual effect will depend on soil particle grain size,

shape and mineralogy and the magnitude of the air pressure.)
Effects on Certain Soil Types

(a) Gravel
i. If the grain size is sufficiently large and the rate of
penetration sufficiently small, the air pressure may

have little effect.

(b) sand

i. The effect on the nature of grain contacts and soil inertial

resistance is relatively small.

ii. If the excess pore air pressures tend to be negative at
760 Torr, total penetration, rise time, total_duration time,
and the amount of ejecta will be greater at lower air

pressures. Measured decelerations will be less.



iii. The reverse will be true if the excess pore air pressures

tend to be positive at 760 Torr.

(c) silt

i. The conclusions pertaining to the excess pore air pressure

will be the same as those for sands.

ii. The effect on the nature of grain contacts and soil inertial
resistance may be significant particularly at very low air

pressures (high vacuums).

Although considerable cgualitative information is available on this
problem, there does exist a lack of understanding of the soil deformation
pattern developed during penetration. Also, it is apparent that the
value of the impact pehetration test is dependent on the development of a

quantitative understanding for the problem.

THEORETICAL APPROACH

In order to become a useful technique for determining in situ soil
properties, analytical expressions relating independent and dependent
variables of the impact penetration problem ﬁust be developed. These
expressions might be developed by following either a theoretical or an
empiricalgapproach. The feésibility of solving the impact problem
theoretically was examined first because analytical expressions derived

in this way would:
1. Provide direct correlation to the desired soil properties,

2. Permit extrapolation to conditions not yet encountered experi-

mentally,

3. Yield a more basic undérstanding of soil penetrometer interaction,

and
4. Eliminate much costly testing.

This feasibility study was initiated by reviewing the existing theoretical

solutions.



Existing Theoretical Solutions

Several of the existing theoretical solutions to the impact penetration

problem are quite similar and will be grouped together in this discussion.

1.

The equations feported by Robins (1742), Euler (1745), Poncelet (1829),

Resal (1895), Petry (1910) , and Schmid (1969) are all derived from

Newton's Second Law of Motion and an assumption concerning the

functional relationship between the soil resistance and the instan—

taneous penetrometer velocity. The accuracy of the resultant equations

depends entirely on the accuracy of the functional relationship

assumed. In aAstudy designed to develop a relationship'between the

constants appearing in these equations and in situ soil properties,

an inaccurate functional relationship will yield an illogical and

complex variation in the constant-soil property relationship as

the values of the other independent variables are changed. Partially

as a result of this fact, relationships between the equation constants

and in situ soil properties are not well understood. The identical

form of the expressions for total penetration reported by Poncelet-

Petry and developed by Young (1969) froﬁ extensive test results

might indicate that the Poncelet-Petry assumptions are the most

accurate.

Scott (1962) reported a similar type of solution except that

(a) the soil penetration resistance is assumed to be some function
of penetration instead of instantaneous velocity, and

(b) through a simple modéel, the weight of the soil moving with the
penetrometer is inciuded. '

The critical comments mentioned above also apply to this solution.

Several sclutions have been reported (McCarty and Carden, 1962; and
Schmid, 1966, 1969) in which soil is assumed to be either a perfectly
elastic, plastic, or viscous material. Although there may exist a few
special cases of each type, soil generally cannot be represented by

such simple models. Impact penetration of lunar soil or a terrestrial

‘lunar soil gimulant is probably not one of those special cases.



Moore (1967) has developed a solution based on the principle of the

Conservation of Energy and several assumptions. The statistical study

conducted by Mitchell et al. (1969) in which several theoretical

solutions were evaluated concluded that the best equation for total

penetration is of a form quite similar to Moore's.

The solutions repo;ted by Scott (1962) and Shipley (1967) are based

on the static bearing capacity theory of soils modified t? include

inertial soil resistance. This inertial soil resistance is determined

by assuming the velocity field within the soil mass. The accuracy

of solutions derived in this way depends primarily on the accuracy

of the assumed velocity field. Although existing experimental

information on the actual velocity field occurring in soils during

impact penetration is quite meager, these studies indicate that the

"general shear" velocity field usually assumed is valid in only

limited cases. Also, it appears that the actual velocity field is

a function of penetration. V

Schmid (1966) and Tsai (1967) have derived solutions in which soil is

assumed to be represented by rheological models consisting of springs

and dashpots. To determine penetration as a function of time, a

functional relationship for the soil resiétance as a function of

time must be assumed. In general, the soil resistance versus time

plot: ’

(a) Assumes a fixed shape only within limited ranges of the independent
variables, and

(b) ‘Is a complex curve which would be difficult to represent
mathematically. -

It is quite possible that this solution may be valid for special

cases. Impact penetration of’lunar soil or a terrestrial lunar soil

simulant is probably not one of those cases.

Thompson (1966) has developed a set of partial differential equations
which govefn the impact penetration problem. This study is one of
the most rigorous existing theoretical approaches to this problem.
These equations cannot be solved in closed form and it appears that

they are too highly nonlinear to be solved numerically.



Another Theoretical Approach Evaluated

In addition to existing theoretical solutions, the feasibilitv of
solving the problem by employing the basic dynamic, kinematic, constitutive,
and conservation equations that govern the behavior of materials was
examined. These basic equations were written in differential form and
combined to yield a set of partial differential equations governing_the
iﬁpact penetration problem. A review of the state of the art of dynamic
constitutive‘eqpations for soils was conducted in cdnjuﬁction with this
phase oF the feasibility study. Then, several numerical techniques for
solving problems of this type including the Finite Element Method, the
Particle in Cell Code, and the Hemp Codé were reviewed. This type of
theoretical approach to the impact penetration problem was terminated
because it appeared to be impractical at the present time for the following

reasons:

1. Applicable soil constitutive relationships are not available,

and their determination would involve a major undertaking, and

2. The available numerical solution methods are not sufficiently

general to analyze soil behavior in this problem.

Conclusions

We feel that an attempt to develop a theéreticalrsolution to the
impact penetration problem is not justified at this time. Certainly one
or more of the existing theoretical solutions to the problem may be valid
under certain conditions. This is evidenced by the similarities between
a few of these éolutions (Moore, 1967; Poncelet, 1829; Petry, 1910) and
equations developed statistically from experimental data. Unfortunately,
the inadequacies in existing test data discussed in the following section
inhibit the determination of whether impact penetration of lunar soil
is one of these conditions. Neither does the test data provide a
basis for the derivation of new theoretical solutions which may better
describe the impact penetration of lunar soil. Therefore, before
additional theoretical investigations are pursued, a special test program

should be conducted.



EMPIRICAL APPROACH

The desired analytical expressions relating the dependent and independent
variables of the.impact penetration problem can be developed by followihg
an empirical approach. In fact, several analytical expressions Aeveloped
from terrestrial experimental test data have been reported in the literature.
Before designing the experimental program required to develop empirical »
analytical expressions for the impact penetration of lunar soil, the
relative and absolute merits of existing expressions and the factors

limiting their extrapolation to the lunar environment were examined.

Existing Empirical Analytical Expressions

The dependent variables that have been considered in previous
empirical investigations are the total penetration, the maximum deceleration
experienced by the penetrometer, and the rise time (time to reach the
maximum deceleration). Relationships derived for the latter two variables
are not discussed in this section because their derivations have been
based on only limited test results. The existing empirical expressions
relating total penetration to the independent variables of this problem

are summarized below.

1. McCarty and Carden (1962):

g'mt’/ zvg/ 3
P = — 5 (low velocity)
P = K"mvg/2 (high velocity)
K*, K" = constants.

2. Woodward, Clyde, Sherard, and Associates (1962 - 1967) :

_ L _1 2
P aln(l + BVO) or P = ain(l + bVO)

a,'B, d, b = constants.
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3. Mitchell et al. (1969):

172
P = KnQ / v0 + 2} for V0 < 200 fps

~
i

¢constant

4. Young (1969):

0.53Sn(Q)l/

el
i

210 + 2. x 10'5v§) for V, < 200 fps

0.0031sn (@

i)
]

2)(VO - 100) for V0 > 200 fps

An attempt to evaluate both the relative and absolute merits of these
expressions utilizing existing experimental test data proved genefally

inconclusive due to the following inadequacies in the test data.

1. Each experimental program utilized penetrometers of different
dimensions and frequently even different shapes making interpre-
tation and interrelation of the available test data difficult.

- Often it was impossible to determine whether the equation was
in error because of the manner in which the penetrometer shape
and dimensions or the other independent variables were handléd.

2. Tests in which the in situ soil properties were well controlled
have usually been limited to‘very low impact velocities (10 to
60 fps). In no study has the penetration at zero impact velocity
been deterﬁ}ned. It was found that all of the above expressions
could be made to fit most of these test results reasonably well.
In most cases, at lecast two additional points — one at a high
impact velocity and one at zero impact velocity — would have
been required to evaluate these expressions.

3. In very few test programs were the soil properties varied over
a sufficiently wide range to accurately identify their effect

on total penetration.



An additional well-planned experimental program will be vequired before
conclusive statements concerning the relative and absolute merits of the
above expressions can be made. In general, the accuracy of the above
expressions when determined from the same test data used to develop the
expressions is on the order of £20%. Therefore, the impact penetration
test has the potential to yield‘approximagely the same accuracy as the
other common techniques for determining the in situ soil properties

mentioned in the Introduction.

Extrapblation to the Lunar Environment

The factors that may restrict extrapolation of terrestrial experimental
test data and resultant empirical expressions to the lunar environment are:

1. The influence of the air pressure at the soil surface has

been studied only under limited conditions (e.g., very small,
light penetrometers impacting at low velocities).

2. The effect of the gravitational field has not been experimentally

evaluated.

Existing test results indicate that the air pressure at the soil
surface may have a very important effect on the output of the penetrometer.
The probable effect of the reduced gravitational field can only be estimated
gualitatively at present. Its probable effect will be to increase the
total pehétration and the characteristic times of the acceleration—tiﬁe
signature while decreasing the measured accelerationsl The effect of
the air pressure at the soil surface can and should be evaluated
experimentally, but the effect of the gravitational field might best be

estimated theoretically.

Conclusions

The accuracy achieved by previous empirical investigations supports
the further development of the impact penetration test as a means of
determining in situ soil properties. Additional experimental testing
will be required to fill gaps in existing terrestrial test results and
to proVide a basis for the extrapolation of these test results to the

lunar environment.



EXPERIMENTAL PROGRAM

Before pursuing further theoretical or empirical investigations,

an experimental program should be conducted which will:
1. Yield an improved understanding of the deformation pattern

within the soil mass during penetration.

2. Provide test data to evaluate existing theoretical and empirical
analytical expressions relating the dependent and independent
variables of the impact penetration problem.

3. Form a basis‘from which new theoretical and empirical analytical
expressions can be developed if existing expressions prove

inadequate.

4. Provide test data on which extrapolation of terrestrial test
results to the lunar environment can be based.
The following factors were congidered in designing an experimental

program to meet these goals.

Dependent Variables

In a laboratory investigation, a wide variety of dependent variables
could be measured. Because the acceleration-time signature of the penetrometer
is expected to be the eventual penetrometer output, it will be used in
this program. This signature will be obtained by mounting a crystal
accelerometer on the penetrometer. In addition, the deflection of the
soil surface, the amount and distribution of ejecta, and the deformation
pattern within the éoil target will be considered. A combination of
photographic and direct measurement techniques will be employed to

evaluate these dependent variables.

Penetrometer
The selection of the penetrometer to be used in this investigation
was based on a consideration of the following:
1. The ease with which the penetrometer can be adapted to anticipated
environments,
2. The sensitivity of the penetrometer to desired soil properties
at the desired depths,
3. The ability to analyze penetrometer output analytically based

on present day knowledge in the field of soil mechanics,



4. Similarity to other soil mechanics problems such as pile
driving and impact loaded footings,
5. Repeatability of penetrometer output including desired
insensitivity to extraneous conditions, and
6. The number of basic dimensions required to characterize the
penetrometer.
The penetrometer selected for this expériment program is a cone-tipped
right-circular cylinder having the following dimensions.
Overall Length = 1.5 feet
L/D of Nose x 2
1% in.
Weight =~ 8 1bs

Diameter

i

Material Steel

Soils
' The criteria established for selecting the soil to be tested in this
program were:
1. The soil should simulate lunar soil as much as possible.
2. The soil composition should not undergo major changes over the
range in environmental conditions to be evaluated.
3. The soil should not require excessive amounts of time to prepare
- for testing.
We believe that a dry granular soil, such as a fine sand, would best

saﬁisfy these criteria, and the lunar soil simulant developed by Mitchell

et al. (1970a) will certainly be considered.

Independent Variables

The independent variables controlling impact penetration include
penetrometer pre-impact flight variables, environmental variables, and
soil property variables.
1. Penetrometer pre-impact flight variables

The purpose of this study and the state of the art of interpreting
impact penetrometer data does not justify the evaluation of the effects
of impact angle, rotational velocity, etc., at this time. Instead, thé
penetrometer will be constrained to motion in which its axis of revolution
and velocity vector are coincident and normal to the soil surface. Also,
the penetrometer will have zero rotational velocity about its axis of
revolution. The remaining pre-impact flight variable is VO'
velocity. The range in impact velocity to be investigated is 0 - 200 fps.

impact



2. Environmental variables

It is impractical at this time to attempt to evaluate experimentally
the effects of the gravitational field and temperature on impact penetration.
Also, the only soil pore fluid to be studied will be "air". The remaining
environmental variable is p, air pressure at the soil surface. The range
in air pressure at the soil surface to be investigated is 1 X lO~l to 760 Torr.
3. Soil property variables

For one particular dry granular soil, the only soil property that
can be varied is e, void ratio. The range in void ratio to be investigated

is e . —e ., . . For any given void ratio, two soils may differ
maximum minimum

in the following properties.

GS - Specific gravity of the solids

D10 - Particle diameter below which 10% by weight of the particles
are finerxr

D60 - Particle diameter below which 60% by weight of the particles

are finer

q - Shape of gradation curve
R0 - Roundness of parﬁicles
SO - Sphericity of particles
M - Mineralogy.

The range in the later variables to be studied will be as wide as possible
within ;easonable time and cost constraints. The number of tests to be
conducted will depend on the variability of the dependent variables

over the anticipated range of independent variables to be investigated.

At present, we anticipate that approximately fifty tests will be needed.

Velocity Generating and Measuring Devices

Several possible velocity generating devices were considered for
this program. For reasons‘of safety and reproducibility, a compressed
air gun was finally selected. A simplified schematic diagram of the air
gun to be fabricated for this program is shown in Figure 2-6 and the
operation of the gun is outlined below. '

1. The penetrometer is placed in the position shown in the diagram.

2. The solenoid valve is activated to close the line connecting

the pfessure vessel to the top of the penetrometer.
3. The air pressure is built up in the pressure vessel to the

desired test pressure.
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Fig. 2-6. Schematic diagram for compressed air gun.



4. The solenoid valve is activated to open the line connecting the
pressure vessel to the top of the penetrometer, thus firing the

penetrometer.

The velocity of the penetrometer will be determined in a velocity
trap consisting of a pair of photocells connected to an oscilloscope

equipped with a camera.

Vacuum Chamber

The design and construction of a vacuum chamber in which to conduct
tests of this sort would involve a major undertaking. However, such a

vacuum chamber has already been built and is in use at the Ames' Research

Center. Mr. D. V. Gault of Ames has kindlf‘offered the use of this chamber
if our testing can be performed without disrupting studies presently being
conducted in the chamber. We appreciate this offer and intend to make

every effort to attempt to design a program acceptable to Mr. Gault.

Conclusion

A conceptual design of an experimental program necessary to advance
the state of the art of impact penetration hés béen completed. The
fabrication of the equipment required to conduct this experimental program

is now in progress.

CONCLUSIONS

The use of the impact penetration test as a technique for determining
in situ soil properties is promising. Indications are that the accuracy
to which soil properties can be determined by this type of test is
approximately the same as that exhibited by other common tests mentioned
in the Introduction. At the same time, the impact penetration test
possesses several advantages when compared to these other tests éarticularly
if the soil deposit to be evaluated is located in a remote area such as
on an extraterrestrial body.

The existing guantitative expressions relating the dependent and
independent variables of the impact penetration problem need further

study. This is particularly evident when the effect of differences



between terrestrial and extraterrestrial environments are considered.

Unfortunately, inadequacies in existing experimental test data prohibit

additional justifiable theoretical or empirical quantitative investigations.
Therefore, an experimental program has been designed to provide a

basis for additional theoretical and/or empirical quantitative investigations.

A conceptual design of this experimental program has been completed.



SYMBOLS

A frontal area of the penetrometer
acceleration

c soil cohesion

CRH caliber radius head of ogive noses

diameter of penetrometer

Dlo particle diameter below which 10% by weight of the particles

are finer

&
=2
o]

particle diameter below which 60% by weight of the particles
are finer

soil wvoid ratio

vertical soil resistance

acceleration of gravity

@ «a = o0

specific gravity of soil solids

n

tal
o

coefficient of earth pressure at rest
characteristic length of penetrometer
mineralogy of soil particles

penetrometer mass

Standard Penetration Test "blow count”

=2 =2 8 B U

, N, N soil bearing capacity factors
penetrometer nose shape and dimensions constant

total impact penetration

L B

o

total penetration at zero impact velocity
air pressure at the soil surface
penetrometer frontal loading (= W/A)

type of soil gradation curve

penetrometer radius

0 R oQa 0 "

o

soil particle roundness

soil constant

n 0
@]

soil particle sphericity

time

oot

total duration time of the penetration process

8

rise time (time to reach maximum deceleration)

2t

instantaneous penetrometer velocity

< < e

o

impact velocity

=

penetrometer weight



instantaneous depth of penetration
soil angle of internal friction
penetrometer mass density

soil target mass density

“major and minor principle stresses in the soil target

-
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Chapter 3. LUNAR SOIL STABILIZATION USING URETHANE FOAMED PLASTICS

T. S. Vinson, T. Durgunogiu, and J. K. Mitchell

INTRODUCTION

The surface of the moon consists of a fragmental surface layer
{(called a "soil" by us, referred to as the "regolith" by some) overlying
blocky or coherent material. Lunar surface operations of various types
related to basing that may be contemplated for the post-Apollo period

will be influenced directly by the characteristics of this layer.

Therefore, where it is determined that existing lunar materials
may not be satisfactory in terms of strength, compressibility, or perme-
ability, some form of stabilization such as the alteration of properties

to improve performance may be necessary.

Relative to lunar payload limitations, the most desirable stabilizer
would be one that stabilizes the greatest volume of soil per unit weight
of stabilizer transported to the moon. Existing stabilizers used in
terrestrial applications have a relatively low ratio of stabilizedvvolume
to initial weight of stabilizer. The use of a foamed plastic as a
stabilizing agent has been investigated for lunar application, because

it offerg the prospect of low-density systems.

0f the nine commercially available foamed plastié¢ types (see Vinson
and Mitchell, 1970) polyurethanes (urethanes) were selected. Their
choice was based on consideration of their potential to stabilize lunar

materials and to meet the lunar physical and environmental constraints.

The purpose of this research program has been to evaluate urethane
foamed plastics as lunar soil stabilizing agents. The emphasis thus
far has been primarily on soil’grouting; i.e., the stabilization of a
soil mass by injection of a liquid chemical system. However, limited

feasibility studies have also been made on lunar soil stabilization by

1. pouring or spraying urethane foamed systems on soil deposits,

and,

2. by mixing urethane foamed systems with soil deposits, i.e.,

admixture stabilization.



Previous studies (Vinson and Mitchell, 1970) have concentrated on:
1. sStudy of the organic chemistry of urethane foamed plastic.

2. Development of urethane foamed plastic grant systems for use

under terrestrial conditions.

3. Evaluation of the sttength, permeability, and other pertinent
mechanical properties of soils stabilized in the terrestrial

environment urethane foams.
The research program during the past year has involved:

1. Development and use of apparatus to investigate the influence of

the lack of atmosphere on the urethane foaming process.
2. Stabilization of soil masses by injection grouting in vacuo.

3. PFeasibility study of admixture stabilization using urethane

foamed plastic.

Each phase is discussed in the following sections. First, however, a

brief summary of our studies for the past contract year is given.
PREVIOUS STUDIES

Chemistry of Polyurethane Foamed Plastics

Urethanes are produced by the reaction of polyhydroxy compounds
(polyols) with polyisocyonates. Both single-chain or cross-linked
polymeric structures may be formed. flexible foams usually contain
only a small amount of cross-linking, whereas rigid foams are most
often highly cross-linked. The equivalent weights of flexible-foam
polyols may average 1000 units; whereas, rigid-foam polyols usually

average 70 to 150 units.

Catalysts, generally tertiary amines and tin salts, may be added to
a urethane system to control or accelerate the rate of reaction. 1In a

foam system, this allows gelation to be synchronized with maximum rise

of the foam.

Surfactants may be added to a system to control cell surface tension

and thus render the foam large-celled or fine-celled. The foam structure



is produced by blowing agents. Two classes of chemical blowing agents
that expand to form a gas in the polymer structure are available. 1In the
First, the gas is produced by a chemical reaction within the polymer. 1In
the second, a chemical blowing agent decomposes or gasifies (evaporates)

in the presence of the exothermic heat of reaction.

Experimental Laboratory Results

Table 3-1 lists a number of urethane systems developed for use in a
laboratory soil grouting program. These systems were found to satisfy

several criteria established for a potential lunar grout; namely,

1. low viscosity prior to set, so that relatively fine-grained

materials could be treated
2. control over setting times
3. simple application
4. ease in handling
5. durability, and
6. relative absence of toxicity and other hazards.

Table 3-2 summarizes strength, elasticity, and permeability results
for "soil cylinders" and cores taken from spherical stabilized masses.
The injection procedure associated with each type of test sample is

described by Vinson and Mitchell (1970) and Vinson (1970).
The results in Table 3-2 indicate that

1. Urethane plastic could be made to foam in the voids of the

soil mass

2. Significant strengthening and the impermeabilization of a
granular soil, No. 20 Monterey sand, could be effected in the
laboratory by the injection of urethane foamed plastic systems,

and

3. Stabilizer densities are considerably less than 1.0 g/cma.



Table 3-1. Urethane foam systems developed

for laboratory injection program.

Chemical
system Wt Major conceptual
Trials constituents (g) framework*
TDI** 59.2
triethylene
glycol {TRI) 46.3
polyethylene
glycol 1.5
44G,H,K castor oil 5.0 — TDI TRI D1 TR§>F—
diacetone
alcohol 3.0
adipic acid 3.0
1~-531 1.0
TDI 6l.4
1,5 pentanediol 17.3
triethylene
glycol (TRI) 24.9
48A7,B,C castor oil 10.0 — T0I 1,5 TD1 TR
diacetone
alcohol 3.0
adipic acid 0.8
L-531 1.0
™I 67.2
diethylene
glycol (DI) 37.8
51,A,B castor oil 10.0 -~ TDI DI DI DI
diacetone '
alcohol 1.5
adipic acid 2.0
L-531 1.0

* The "major conceptual framework" is an idealization of the actual
urethane molecule formed in a given system; it is the most representative

molecule that can be visualized for a system.

** TDI = toluene diisocyanate



Table 3-1. (Cont'd)
Chemical
system Wt Major conceptual
Trials constituents (g) framework*
TDI 62.5
triethylene
glycol (TRI) 20.9
TMP+ 18.6 DI TDI
39T1,U,v,GS castor oil 5.0 ' JMP
diacetone
alcohol 2.0
adipic acid 0.6 TDI
I~-531 1.0
TDI 68.1
1,5 pentanediol 37.4
54U ,W castor oil 15.0
. adipic acid 1.3 TDI __@__ TDI F_@’-
L-531 1.0
TDI 64.2
diethylene
glycol (DI) 24.4
TMP 15.5
55G,H,J castor oil 10.0
diacetone DI TDI
alcohol 5.0 W,
adipic acid 1.2
L-531 1.0
+ TMP = 2-ethyl-2-(hydroxymethyl)-1,3-propanediol
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DESIGN AND PERFORMANCE OF VACUUM APPARATUS

Introduction

An understanding of the formation of foamed plastics in vacuo is
essential before urethane chemical systems can be designed for use in
actual lunar engineering problems. A crude vacuum apparatus (Vinson and
Mitchell, 1970) was developed to establish whether a foamed plastic could
be formed in vacuoc. It consisted of a vacuum desiccator, an air-magnetic
stirrer, and a McLeod vacuum gage connected to a vacuum pump. With this
apparatus it was possible to develop a chemical system that foamed and
hardened in wvacuo, but gave little insight into the foam formation
mechanism. Further, it was extremely difficult to conduct tests in
rapid succession as the space in the vacuum desiccator was extremely

limited.
Design and Performance of Vacuum Apparatus

A new apparatus that overcomes the difficulties described above was
constructed, as shown in Figures 3-1, 3-2, and 3-3. This vacuum apparatus

was designed to allow the following studies:
1. Injection into soil masses in vacuo.

2. Admixture stabilization using urethane chemical systems in

vacuo (with slight apparatus modifications). ’
3. Development of urethane spray systems in vacuo.

The vacuum chamber is steel, 18 inches in diameter and 12 inches
high. The inside surface of the chamber is nickel-plated for easy
cleaning. The top plate is detachable so that mixing jars and other
equipment can be easily removed. An O-ring seal is used to prevent
air-leakage. A vacuum of 50 millitorr is reached after a pumpdown time

of 10 minutes.

A glass trap is located between the pump and the vacuum chamber to
prevent contamination of the pump oil by condensable vapors. The trap
conductance is high and causes no more than 10% reduction in pump speed.

Dry ice and acetone are used as a refrigerant in the trap.

Toluene diisocyanate (TDI) and polyol, the two major components in
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Fig. 3-1. Schematic diagram of vacuum apparatus.
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urethane chemical systems, can be introduced into a mixing jar in the
vacuum chamber through separate lines, or by injection into the chamber

in an "associated state."*

If the components are introduced into the system by separate lines,
the procedure is to puncture a rubber seal with a syringe and inject the
TDI or polyol into a mixing jar in the vacuum chambe:. The puncture is
resealed with vacuum grease after each operation to prevent air-leakage.
During the injection operation, the vacuum in the chamber increases to
approximately 200 millitorr. Witﬁ the pump in continuous operation, the
chamber returns to 50 millitorr after approximately 2 minutes. The
components are mixed with a rotary stirring shaft. The shaft is sealed
with O-ring rotary shaft seals. There is no change in the vacuum

reading during the mixing operation.

Urethane systems can be injected into soil masses contained in
hollow polypropylene molds. The injection procedure is to insert a
syringe cannula, 5.0 inches long, through a rubber seal fitted to the
top of the chamber, into the polypropylene mold. (As before, the rubber
seal is resealed with vacuum grease after the operation.) Two rubber
stoppers, one with a hole through which the cannula can be inserted, are
placed at either end of the mold to prevent moveﬁent of the soil mass.

During this operation the vacuum increases to approximately 100 millitorr.

All operations are observed from eithef one of the two porthole
windows. The vacuum inside the chamber is measured using a thermocouple

vacuum gage.

* An "associated state" may be thought of as a chemical state in which
the polyol and TDI molecules in a given system have come into alignment.
That is to say, OH groups on the polyol‘molecules are in close proximity
to the NCO groups on the TDI molecules. They have not at this time
reacted in the sense of forming a polymeric structure, but there is a

distinct formation of a homogeneous solution.

3-12



FOAM FORMATION IN VACUO

Theory

The theoretical considerations allowing the development of a foamed
plastic system for use in vacuo have been described in detail in a
previous repbrt (Vinson and Mitchell, 1970). In summary, those consider-

ations may be stated as follows:

1. To withstand the internal gas pressure in vacuo, the tensile
strength of'the foam bubble skin must be considerably stronger
than at atmospheric pressure. In developing urethane foamed
plastic systems %n vacuo, the polymer Structure of the urethane
plastic must be formed rapidly enough to develop the required

tensile strength or no foam will be produced.

2. The ability to form a polymer rapidly is a function primarily
of the relative raie of reactivity of TDI with various constit-
uents in the chemical system. Thus, chemical constituents with
a rapid rate of reactivity must be chosen if a foam is to be

developed in vacuo.

3. It is knbwn that the vaporization temperature of certain chemicals
decreases as the pressure in their surroundings decreases. This
is true for the tolylene diisocyonate common to all urethane
chemical systems. Therefore, if a desirable foam structure is
to be produced, the system should be formulated to minimize

vaporization; i.e., a high vaporization temperature is desirable.

Experimental Results

Foam formation in vacuo.

Pursuant to the theoretical requirements stated above, several
urethane foam systems were developed and tested in glass jars in the

vacuum apparatus. Table 3-3 lists these systems.

In some trials ,vaporization of the polyisocyonate component of the
systems was minimized by employing the technique of "prepolymerization”;
i.e., a measured amount of the polyol component was mixed with the TDI

prior to injection into the vacuum apparatus. Effectively, the average

13



3-14

*poob ou o1aserd
AURITNSDY  *SUTWRTOURYIDTIY
yonul o003 ATausxedde {IQL UITM
euTweTOURY3IaTIY 0°z Arod-sad YIN OTA Se swes NTA
WIOITUN~-uou TTT3IS f{weoy poob
Arqeuosesy IAL UITA TooAtb
sueTAyzetay b-0° T ATod~-oxd YINW DIA S® swes KTA
pbutmoTqg 90°0 €°0 ONm sntd
2
axow Ing ‘YA se sues YIK 1gTA Se ewes ITA
[4
Buimo . . sn1d
o zom , TM0Tq YT 0T1°0 s°0 ) O'H T ata
Ing ‘YIA Se sues gTA ST sues
90°0 €0 PTo® OTATP® YITM
Vip SE Suwes VIR ng ‘YTA Se swes OTA
YiA UT
ueyy I9339¢ Ing wIoTun-uou proe otdTIpe Ou
utebe weoz {bHurzTaodea IAL YIW ang ‘YA Se swes a1a
0T°0 S*0 pToe o1dTp®
0z*0 0°T (3ueoezans) TE£6T
waoITun-uou AxsA Ing (¥IW) sniexedde . .
peonpoxd weoz !{burtztaodea IAL umnoeA Ul pPaxXTu €9°¢C el 102416 susTiuzatal Yia
0Z°G 09z duTWeTOURYISTIZ
81°¢CT 6°09 Id4L
SIUDUMOD SUOTITPUOD DBUTXTR AEbv (%) SIUBNZ TISUOD TeTIl
IM IM wo3sAs TeoTwayD
*onoeA UT PO31SO3 SWe3ISAS weol auerylsin ‘€-f STTEL



3-15

weog poob Arqeuosesd
{gausuodwon TOOD ITQL UATM

93035 PO3RTOOSSE

auTwetouryxstiy B-g° o Arod-sad ut aoslut gcA se auwes aca
90°0 €°0 proe otdIpe
poob ou weoz YIK snTd ‘¥EA Se suwes geA
0z°0 0°T1 161
Z8°¢ T° %1 To0AT6 susTAy3eTI3
pawiog weog od v 99°g £°82 SUTWeTOURYISTAT ueA
¢S 1T 9°LS 141
weoy xood Axoa {IQL UITM
ouTweTouryleTIy} b~z Atod-sxd YIW YZA Se swes gzA
0Z°0 0T T€6T
900 €°0 pToe otdrpe
weol xood Aisa YINW 8z L PO SUTWETOURYISTIY YZA
cL Tt 9°¢9 14z
SRUBUNIOD SUOTAITPUOD BUTXTIK (wb) (2) S3USN3TISUOD TeTIAL
M M wo3sAs TedTwsyD

(p,3uQd) °g-£ STURL



molecular weight of the TDI component was increased, and its vaporization
tendency in vacuo decrgased. It was not found necessary to employ any

special techniques to preclude vaporization of the polyols.

It may be seen that, in general, most of the systems tested yielded
unsatisfactory foams. There may be at least three reasons for these
results. First, with the exception of one system, all systems were
mixed in the vacuum apparatus. The mixing in this single instance was
found to be poor. Typically, a reaction would take place at the inter-
face of the TDI and the polyol components before the system could be
thoroughly mixed. This initial reaction led to a polymeric Structure
that probably deviated considerably from the predicted conceptual frame-

work. The net result was a weak, friable foam.

Second, while the urethane systems tested in the vacuum apparatus
were designed to have a rapid polymer formation ability, and in fact did
exhibit rapid polymer formation under terrestrial conditions, the rate
of reactions was apparently still too low relative to vacuum conditions.
Observations of the foam formation in vacuo indicated that during the
first few seconds of reaction, the polymer structure did not develop the
required tensile strength to preclude the escape of internal gas. It
was only after the reaction was reasonably far along (typically after
15 to 20 seconds) that a foam structure began to develop. Even at this
time only large foam bubbles appeared, indicating that}the internal gas

was at a very low pressure before it could be effectively‘confined.

Finally, the temperature of the system during the reaction was
extremely high. The general effects of the high temperature are a
disruption in the buildup of the polymer structure and high internal

gas pressures which, again, cause a poor foam structure to be formed.

To overcome the difficulty of mixing the components in the vacuum
apparatus, several attempts were made to introduce associated systems
into the vacuum apparatus. For the majority of the systems, it was

found that the reaction time* was too fast (less than 5 seconds) to

* The reaction time is defined as the time between association and the
formation of a polymeric structure sufficiently developed as to preclude
injection grouting, or the time between association and an obvious reac~-

tion of any nature.



allow introduction into the chamber. To overcome this problem, the
components were cooled before association. This allowed the reaction
time to be increased to approximately 15 seconds in one system (V3D),
making injection into the apparatus possible. However, while the foam
produced in such an operation was better than that produced with the
same system when mixing was done in the apparatus, it was still

unsatisfactory.

Further attempts to increase the polymer formation ability or to
reduce the heat of reaction for foams generated in the absence of soil
were discontinued when it was discovered that behavior in soil was

distinctly different than it was in an open glass jar.

Soil grouting in vacuo.

Cylinders of two types of soil were grouted in vacuum following the
procedure described above. It was found that masses of No. 20 Monterey
sand ccould be stabilized in vacuo using either system 39 (Table 3-1) or
system V3D (Table 3-3). Stress-strain relationships in unconfined
compression tests are shown in Figure 3~4 for three soil cylinders. All
of the cylinders had unconfined compressive strengths of approximately
4500 psi. -The foam densities in the stabilized masses were approximately

0.50g/cc.”

It is of interest to note that the unconfined compressive strength
for V3H (system 39) is approximately the same as the unconfined compres-
sive strength for soil cylinders grouted using the same system under

terrestrial conditions.

* Injections into a lunar soil simulant (Houston, Namig, and Mitchell,
1970) did not prove as successful as injections into No. 20 Monterey
éand. Penetration grouting, i.e., filling the interstitial voids within
a soil mass with a stabilizing agent, was not possible because of the
relatively fine-grained nature of the simulant. Thus, no soil cylinders
were formed. When an injection was'attempted, the associated urethane
system would seek a path of least flow resistance, typically along the
wall of the cylindrical injection mold. Some foaming occurred which

tended to compact the lunar soil simulant somewhat.
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Fig. 3-4. Relationship between stress and strain for
No. 20 Monterey sand stabilized in vacuo.



Perhaps the most significant experimental fact resulting from
grouting soil masses in vacuo is that it is not necessary to use a
urethape system with a rapid polymer formation ability to form a foam
structure. (This does not imply that a rapid polymer formation ability
will not be necessary in a "pour-on" or “spray" lunar urethane stabili-
zation application.) There are at least two factors that allowed the
foam to form in a soil mass. First, the soil acts as a heat sink for the
urethane systems. Thus, the polymeric structure develops to a greater
degree before blowing occurs. Further, there is less disruption of the
associated system and less blowing in the system due to the heat of the
reaction vaporizing some of the components. Also, the gas that is pro-
duced is at a lower pressure because of the lower temperature of the

system.

Second, the soil particles confine the expanding foam. In an open
container, such as the glass jars used in the experiments, there is no
confinement of the foam structure. The foam bubbles expand to a size
where the internal gas pressure is in equilibrium with the tensile stress
in the bubble skin. If equilibrium cannot be established, the bubble
bursts. In the soil mass, however, the foam bubbles can only f£ill up
the voids in the soil mass. While some elongation of the foam bubble

can_occut; it is probably negligible in the overall foaming process.

ADMIXTURE STABILIZATION

The feasibility of using urethane foamed plastic as an admixture
lunar stabilizing agent was investigated by mixing system 39 (Table 3-1)
with the lunar soil simulant. The resultant material was then compacted
in a cylindrical mold and allowed to cure for one day before unconfined
compressive tests were conducted. Figure 3-5 shows the results of these
tests. As illustrated, the cylinders had unconfined compressive strengths
of 700, 4350, and 2880 psi relative to foam contents of 5, 10, and 15
per cent (by total dry weight of soil). These are extremely encouraging
results and indicate that urethane foamed plastics have potential as

lunar admixture stabilizing agents.

\
The data further illustrate that there is an optimum foam content

relative to achieving the highest unconfined compressive strength. This
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is also true of most terrestrial admixture stabilizing agents. For

system 39 and the lunar soil simulant, it is apparently 10 per cent.
CONCLUSIONS AND RECOMMENDATIONS

Lunar Soil Stabilization by Soil Grouting

The results of this research program indicate that grouting of
fragmented rock masses or coarse-grained soil masses using urethane
foamed plastic should be possible in the lunar environment. Urethane
systems have been developed that can cause such masses to have high
unconfined compressive strengths. The degree of impermeabilization
attained in these systems remains to be determined. While the effects of
temperature on the foaming process have not been investigated, it is felt
that systems could be formulated, or that the existing systems could be

modified, to allow foam formation within a reasonable range of temper-

atures.

Admixture Lunar Soil Stabilization Using Urethane Foamed Plastics

The use of urethane or other foamed plastics as admixture lunar soil
stabilizing agents appears to be highly feasible and may represent a
realistic approach for stabilizing fine-grained lunar soil deposits.

The effect of the lunar environment on the admixture stabilization
process must be investigated. Further, the mechanical'difficulties

associated with this type of stabilization technique must be assessed.

Pour and Spray-on Urethane Foam System Applications

It was not possible to develop a suitable urethane foaﬁ system for
lunar pour or spray-on applications. This failure was primarily due to
a mechénical system failure. It is felt that the vacuum apparatus used
could not accommodate urethane systems with the extremely rapid polymer
formation ability necessary for such applications. However, it is
recommended that research work in this area be continued since pour or
spray-on applications may still represent a useful approach to lunar soil

stabilization for construction purposes.
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Chapter 4. FEASIBILITY STUDY OF ADMIXTURE
SOIL STABILIZATION WITH PHENOLIC RESINS
(T. Durgunoglu and J. K. Mitchell)

INTRODUCTION

The feasibility of using phenolic resins as admixture stabilizing
agents was investigated. The purpose‘was to determine whether a less
expensive chemical resin system than the urethanes could be used for soil
stabilization. The following characteristics are desired for any system

that might be used for stabilization of unconsolidated soils:
1. Easy mixing with soil,
2. A controllable curing time,
3. Good compaction properties,
4. ZEase of handling, and
5. Relative absence of toxicity.

Further treated soil should have substantially higher strength and lower

permeability wvalues than untreated soil.

This section presents results of tests conducted to find chemical
systems Qatisfying these criteria. Engineering property data for soil
masses stabilized with some different phenolic resin éystems developed

are also presented.

LABORATORY PROCEDURES
Chemistry of Phenolic Resins

Phenolic resin is a thermosetting* type of resin which is obtained

as a condensation product of formaldehyde with phenols.

Phenol~-formaldehyde resins, commonly termed "phenolics," are
produced by the stepwise polymerization of formaldehydes with phenols.
" The type of product formed in the reaction is determined by the functional-
ity of the monomers {(phenols); i.e., by the average number of reactive

* Thermosetting resins are insoluble in common solvents due to formation

of covalently cross-linked structure.



functional groups per monomer (Fig. 4-1) molecule. Polyfunctional
monomers, such as phenols with more than two functional groups per
molecule, give branched or cross-linked polymers. Catalysts are added

to control or to accelerate the reaction.

OH
ortho orth

para

Fig. 4-1. Active hydrogen atoms in phenol.

Formaldehydes.

Formalin is the general-purpose formaldehyde in aqueous solution
form regﬁlarly available at 37% by weight. Paraforma;dehyde is a mixture

of polyoxymethylene glycols, HO-(CHzo)nH, with n in the range of 8 to 100.

It is available in powder form at 95% by weight. It was used for
this research program because a large amount of water would be objec-

tionable in the system.



Phenols.

The basic structure of pure phenol can be represented as in
Fig. 4-1. HoWever, commercial phenol obtained from coal tar is likely
to contain varying amounts of impurities. It is necessary to control
the nature of these homologs,* since they have different numbers of

active hydrogen atoms (Fig. 4-2).

OH OH OH
o CH3 — D CH3 CH3
CHgy
o-cresol m-—cresol 2.6 xylenol

Arrows indicate active hydrogen atoms

Fig. 4-2. Some homologs of phenol.

Discussion of the effects of these homologs on reactions is out-
side the scope of this research program. Phenols were carefully

examined before they were used, and colorless phenol was taken ag an

indication of purity.

Reaction of phenol and fbrmaldehyde.

Phenols react with aldehydes to give condensation products. The
reactions are always catalyzed, either by acids or by bases. The nature

of the product is greatly dependent on the type of catalyst and the mole

* A homolog is a simple derivative of the original molecule.



ratio of the reactants. Major reactions can be summarized as follows:

1. Addition to give methylol phenols.

OH OH
‘ CHgOH HOCH, CH,0H
| | 4 CH0 —» -5;‘;0-’
(4-1)
CHgOH CHaOH

2. Condensation of methylol phenol and a phenol to give a

OH OH
CHp

— + Hy0

{4-2)

3. Condensation of two methylol groups to give an ether bridge.

methylene bridge.

OH

OH OH

CHa —0 —CHp (" )
_ (4-3)

4. Decomposition of ether bridges to methylehe bridges and

(4-4)

formaldehyde.
OH OH
HOCHZ cHz-—O —_CHZ HOGHa CHa
P ;



Factors influencing the reactions.

The following factors influence the reactions:

1.

Nature of phenols. As mentioned before, the reactivity of
phenol is greatly influenced by its structure. Comparative
reactivity of some homologs of Qhenol can be ordered with
reactivity varying from more to.less, as follows: m-cresol,

phenol, o-cresol, 2.6 xylenol.

The mole ratio of reactants. Thompson (1941) has studied the
effect of the formaldehyde-to~phenol ratio on tensile, compres—
sive,and impact strengths of the cured resin. The properties
improve as the ratio increases from 1.0 to 3.5. The effect of
this ratio on compressive strength of resin is given in

Figure 4-3.

Catalysts. The speed, as well as the course of the reaction,

is greatly affected by the presence of different acid or

alkali catalysts. Although the formaldehyde—-to-phenol ratio is
the main factor, the type of product formed also depends greatly
on the choice of the catalyst. BAlkaline catalysts favor the
formation of phenolic alcohols, acid catalysts favor the

formation of methylene bridges.

Temperature. The reaction rate approximately doubles for every

10 °C rise in temperature.

Analytical Laboratory Procedure

It was necessary to determine what proportions of chemicals should

be used to achieve optimum engineering properties of treated soil. This

was accomplished by taking a 1.5 to 1.0 mole ratio of formaldehyde-—to-

phenol as recommended by different investigators. (Thompson,; 1941).

Later, a 1.7 to 1.0 ratio was used in order not to have unreacted phenol

in the system; 0.3 mole of sodium hydroxide was used for each mole of

phenol for preparing the resin.



Comprehensive strength — Ib./sq.in. x 103

S
|
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2

(00
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20 3.0
MOL ratio of formaldehyde to phenol

. Fig. 4-3. Effect of proportion of reactants on the compressive
strength of phenol-formaldehyde cast resins. (After
Thompson, 1941.)




Experimental Laboratory Procedure

Soil.

A moderately expansive, light brown, inorganic sandy clay (CL)
from Pittsburg, California, was used. Classification data for this soil

are summarized below:

1. Percent sand, 33%; percent silt, 43%; precent clay, 24%;
LL(%), 35; PL(%), 19.

2. Maximum dry density, 118.9 psf

Modified AASHO.
3. Optimum water content, 13.5%

4. Mineralogical analysis of the clay fraction showed that the
clay minerals present are predominantly montmorillohite with a

trace of kaolinite.

Preparation of resin.

A special flask was used for preparing the resin to be used in
treating the soil. First, the desired amount of paraformaldehyde was
poured into the flask. Then phenol was added. After adding a certain
amount of water and sodium hydroxide, the batch was mixed using a
constant speed mixer. The temperature was kept nearly constant at about
77 °C. This was necessary, since temperature will increase exponen-
tially and cause the reaction to be violent. Typical time~-temperature
curve is given in Figure 4-4. The resin was cooked* about 2 to 2% hours
until the appearance of the first turbidity. The resin was neutralized

by adding the proper amount of some organic acid such as lactic acid.

Specimen preparation.

Soil at the desired water content was mixed with activated resin.

Mixing was continued until a homogeneous mix was obtained. Specimens

* The reaction described in the previous section takes place during the

cooking process.

+ Laboratory-cooked resin was activated by adding different amounts of

acids and bases before mixing with soil.
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were compacted in l.4~inch-diameter Harvard miniature compaction molds
using the general procedure described by Wilson (1964). Seven layers of
soil with fifteen tamps per layer were used for the preparation of all
specimens. Compactive effort was held constant by applying 12.5 pounds

of force to the compaction foot.

RESIN SYSTEMS DEVELOPED

A summary of resin systems deveioped in the laboratory and the

amount of ingredients used in these systems are given in Table 4-1.

ENGINEERING PROPERTIES OF STABILIZED SOIL MASSES

The unconfined compression test was chosen as a standard for eval-
uating the strength of the stabilized soil masses. A summary of test
results is given in Tables 4-2 and 4-3. All of the specimens were cured
at constant temperature in a 100% humidity room. The low strength
values indicated that the resin systems were not properly hardened inside
the soil masses. It is believed that this was due to the presence of a
large amount of water in the system. Therefore, in future studies, the
water content should be held as low as possible. Hardening mechanisms
of the resin were studied by adding different amounts of acidic and basic
catalysts to the resin. An amount of sulfuric acid sufficient to produce
a pH value less than 2.0 resulted in satisfactorily cured resins in the
absence of soil. However, the use of basic catalysts did not yield

satisfactorily hardened resin; no perceptible curing was observed.

SUMMARY AND CONCLUSIONS

The feasibility of using phenolic resins as admixture soil stabili-
zators was studied. The chemistry of resin systems, controlling factors
of reactions, and the effects of different factors on curing were also

investigated.

Several systems were developed which, on theoretical grounds, appear
to offer some potential for stabilization. It was found, however, that
soils treated with these materials were not satisfactorily stabilized.
The probable cause of this poor performance was the inclusion of large
amounts of water in the resin system. To avoid the inclusion of excess

water in treated soil systems, powder resin forms should be investigated.
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Table 4-2. Summary of test results for system 3.

Water Unconfin?d
Resin content Dry density szpreiilve
. streng
Trial Catalyst pH (%) (%) {(pcf) (psi)
Base
1 (Naom) 9.0 15 2.2 120.2 26.7
Base .
2 (Ha0m) 10.0 15 2.2 117.3 20.0
Base ) P
3 (a0 10.4 15 2.2 110.0 14.0
Base ,
4 (Na0m) 10.0 15 2.2 107.2 13.0
Base
5 (NaoH) 10.0 15 7.2 106.1 10.0
6 Acid 2.4 ) 15 2.2 113.5 36.7
(H_ PO )
3 4
7 Acid 1.8 | 15 2.2 117.0 44.7
(H_PO )
304
8 heid 1.9 10 7.2 122.2 60.0
(H.PO )
3 74
9 Acid 1.9 5 7.2 115.3 70.0
(#,PO,)

* Specimens were cured 7 days.



Table 4-3. Summary of test results for system 4.
Curing Water Unconfined
. time . Resin content Dry density |compressive
Trial Catalyst (days) (%) (%) (pcf) stfeggfh
P
1 Acid 5 15 2.2 100.0 26
{H_S0 )
2774
2 Base 5 10 2.2 109.8 20
(NaOH) : :
3 Acid 5 S 2.2 107.8 16
(HZSO4)
4 Acid 5 10 7.2 107.9 26
(sto 4)
5 Acid 5 5 7.2 104.0 24
(sto4) :
6 Acid 4 5 12.2 111.7 11
(H.,SO,)
) 2774 ‘
7 Acid 4 10 2.2 111.1 10
(H,S0,)
274
8 Base 2 15 2.2 100.2 ~0
{NaOH) .
9 Base 2 10 7.2 101.5 ~0
(NaOH)
Acid +
10 resor- 2 15 2.2 96.5 5
cinol
' Base +
11 resor- 2 10 2.2 ‘101.7 ~0

cinol
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