343 research outputs found

    Thunderstorm Observation by Radar (ThOR): An Algorithm to Develop a Climatology of Thunderstorms

    Get PDF
    The Thunderstorm Observation by Radar (ThOR) algorithm is an objective and tunable Lagrangian approach to cataloging thunderstorms. ThOR uses observations from multiple sensors (principally multisite surveillance radar data and cloud-to-ground lightning) along with established techniques for fusing multisite radar data and identifying spatially coherent regions of radar reflectivity (clusters) that are subsequently tracked using a new tracking scheme. The main innovation of the tracking algorithm is that, by operating offline, the full data record is available, not just previous cluster positions, so all possible combinations of object sequences can be developed using all observed object positions. In contrast to Eulerian methods reliant on thunder reports, ThOR is capable of cataloging nearly every thunderstorm that occurs over regional-scale and continental United States (CONUS)-scale domains, thereby enabling analysis of internal properties and trends of thunderstorms. ThOR is verified against 166 manually analyzed cluster tracks and is also verified using descriptive statistics applied to a large (~35 000 tracks) sample. Verification also relied on a benchmark tracking algorithm that provides context for the verification statistics. ThOR tracks are shown to match the manual tracks slightly better than the benchmark tracks. Moreover, the descriptive statistics of the ThOR tracks are nearly identical to those of the manual tracks, suggesting good agreement. When the descriptive statistics were applied to the ~35 000-track dataset, ThOR tracking produces longer (statistically significant), straighter, and more coherent tracks than those of the benchmark algorithm. Qualitative assessment of ThOR performance is enabled through application to a multiday thunderstorm event and comparison to the behavior of the Storm Cell Identification and Tracking (SCIT) algorithm

    Impact of Continuous Flow Left Ventricular Assist Device Therapy on Chronic Kidney Disease: A Longitudinal Multicenter Study

    Get PDF
    Background: Many patients undergoing durable left ventricular assist device (LVAD) implantation suffer from chronic kidney disease (CKD). Therefore, we investigated the effect of LVAD support on CKD. Methods: A retrospective multicenter cohort study, including all patients undergoing LVAD (HeartMate II (n = 330), HeartMate 3 (n = 22) and HeartWare (n = 48) implantation. In total, 227 (56.8%) patients were implanted as bridge-to-transplantation; 154 (38.5%) as destination therapy; and 19 (4.7%) as bridge-to-decision. Serum creatinine measurements were collected over a 2-year follow-up period. Patients were stratified based on CKD stage. Results: Overall, 400 patients (mean age 53 ± 14 years, 75% male) were included: 186 (46.5%) patients had CKD stage 1 or 2; 93 (23.3%) had CKD stage 3a; 82 (20.5%) had CKD stage 3b; and 39 (9.8%) had CKD stage 4 or 5 prior to LVAD implantation. During a median follow-up of 179 days (IQR 28–627), 32,629 creatinine measurements were available. Improvement of kidney function was noticed in every preoperative CKD-stage group. Following this improvement, estimated glomerular filtration rates regressed to baseline values for all CKD stages. Patients showing early renal function improvement were younger and in worse preoperative condition. Moreover, survival rates were higher in patients showing early improvement (69% vs 56%, log-rank P = 0.013). Conclusions: Renal function following LVAD implantation is characterized by improvement, steady state and subsequent deterioration. Patients who showed early renal function improvement were in worse preoperative condition, however, and had higher survival rates at 2 years of follow-up

    Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview

    Get PDF
    Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)

    GeneDB--an annotation database for pathogens.

    Get PDF
    GeneDB (http://www.genedb.org) is a genome database for prokaryotic and eukaryotic pathogens and closely related organisms. The resource provides a portal to genome sequence and annotation data, which is primarily generated by the Pathogen Genomics group at the Wellcome Trust Sanger Institute. It combines data from completed and ongoing genome projects with curated annotation, which is readily accessible from a web based resource. The development of the database in recent years has focused on providing database-driven annotation tools and pipelines, as well as catering for increasingly frequent assembly updates. The website has been significantly redesigned to take advantage of current web technologies, and improve usability. The current release stores 41 data sets, of which 17 are manually curated and maintained by biologists, who review and incorporate data from the scientific literature, as well as other sources. GeneDB is primarily a production and annotation database for the genomes of predominantly pathogenic organisms

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore