1,322 research outputs found
On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan.
A Friedel-Crafts alkylation is described that efficiently transforms tryptophan-containing peptides into macrocycles of varying ring connectivity. Factors are surveyed that influence the distribution of regioisomers, with a focus on indole C3-alkylations leading to bridged endo-pyrroloindolines. We probe the stability and stereochemistry of these pyrroloindolines, study their rearrangement to C2-linked indolic macrocycles, and demonstrate a scalable, stereoselective synthesis of this compound class. Placing the macrocyclization in sequence with further template-initiated annulation leads to extraordinary polycyclic products and further demonstrates the potential for this chemistry to drive novel peptidomimetic lead discovery programs
Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study
The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond
Long-term photometry and periods for 261 nearby pulsating M giants
We present the results of a 5.5-year CCD photometric campaign that monitored
261 bright, southern, semi-regular variables with relatively precise Hipparcos
parallaxes. The data are supplemented with independent photoelectric
observations of 34 of the brightest stars, including 11 that were not part of
the CCD survey, and a previously unpublished long time-series of VZ Cam.
Pulsation periods and amplitudes are established for 247 of these stars, the
majority of which have not been determined before. All M giants with sufficient
observations for period determination are found to be variable, with 87% of the
sample (at S/N >= 7.5) exhibiting multi-periodic behaviour. The period ratios
of local SRVs are in excellent agreement with those in the Large Magellanic
Cloud. Apparent K-band magnitudes are extracted from multiple NIR catalogues
and analysed to determine the most reliable values. We review the effects of
interstellar and circumstellar extinction and calculate absolute K-band
magnitudes using revised Hipparcos parallaxes.Comment: 18 pages, 15 figures; accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Correlation Between the Deuteron Characteristics and the Low-energy Triplet np Scattering Parameters
The correlation relationship between the deuteron asymptotic normalization
constant, , and the triplet np scattering length, , is
investigated. It is found that 99.7% of the asymptotic constant is
determined by the scattering length . It is shown that the linear
correlation relationship between the quantities and
provides a good test of correctness of various models of nucleon-nucleon
interaction. It is revealed that, for the normalization constant and
for the root-mean-square deuteron radius , the results obtained with the
experimental value recommended at present for the triplet scattering length
are exaggerated with respect to their experimental counterparts. By
using the latest experimental phase shifts of Arndt et al., we obtain, for the
low-energy scattering parameters (, , ) and for the
deuteron characteristics (, ), results that comply well with
experimental data.Comment: 19 pages, 1 figure, To be published in Physics of Atomic Nucle
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
The high-precision, charge-dependent Bonn nucleon-nucleon potential (CD-Bonn)
We present a charge-dependent nucleon-nucleon (NN) potential that fits the
world proton-proton data below 350 MeV available in the year of 2000 with a
chi^2 per datum of 1.01 for 2932 data and the corresponding neutron-proton data
with chi^2/datum = 1.02 for 3058 data. This reproduction of the NN data is more
accurate than by any phase-shift analysis and any other NN potential. The
charge-dependence of the present potential (that has been dubbed `CD-Bonn') is
based upon the predictions by the Bonn Full Model for charge-symmetry and
charge-independence breaking in all partial waves with J <= 4. The potential is
represented in terms of the covariant Feynman amplitudes for one-boson exchange
which are nonlocal. Therefore, the off-shell behavior of the CD-Bonn potential
differs in a characteristic and well-founded way from commonly used local
potentials and leads to larger binding energies in nuclear few- and many-body
systems, where underbinding is a persistent problem.Comment: 69 pages (RevTex) including 20 tables and 9 figures (ps files
O- vs. N-protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a peri N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group
X-ray crystallography and solid-state NMR measurements show that protonation of a series of 1-dimethylaminonaphthalene-8-ketones leads either to O protonation with formation of a long N–C bond (1.637–1.669 Å) between peri groups, or to N protonation and formation of a hydrogen bond to the π surface of the carbonyl group, the latter occurring for the larger ketone groups (C(O)R, R = t-butyl and phenyl). Solid state 15N MAS NMR studies clearly differentiate the two series, with the former yielding significantly more deshielded resonances. This is accurately corroborated by DFT calculation of the relevant chemical shift parameters. In the parent ketones X-ray crystallography shows that the nitrogen lone pair is directed towards the carbonyl group in all cases
Neurology
Contains reports on eight research projects.United States Air Force (AF33(616)-7588, AF49(638)-1130)National Science Foundation (Grant G-16526)United States Army Chemical Corps (DA-18-108-405-Cml-942)United States Public Health Service (B-3055, B-3090)United States Navy, Office of Naval Research (Contract Nonr-1841(70)
Weak capture of protons by protons
The cross section for the proton weak capture reaction
is calculated with wave functions obtained from a number of modern, realistic
high-precision interactions. To minimize the uncertainty in the axial two-body
current operator, its matrix element has been adjusted to reproduce the
measured Gamow-Teller matrix element of tritium decay in model
calculations using trinucleon wave functions from these interactions. A
thorough analysis of the ambiguities that this procedure introduces in
evaluating the two-body current contribution to the pp capture is given. Its
inherent model dependence is in fact found to be very weak. The overlap
integral for the pp capture is predicted to be in the range
7.05--7.06, including the axial two-body current contribution, for all
interactions considered.Comment: 17 pages RevTeX (twocolumn), 5 postscript figure
Short time-scale frequency and amplitude variations in the pulsations of an roAp star: HD 217522
Photometric observations of HD 217522 in 1981 revealed only one pulsation frequency ν1 = 1.215 29 mHz. Subsequent observations in 1989 showed the presence of an additional frequency ν2 = 2.0174 mHz. New observations in 2008 confirm the presence of the mode with ν2 = 2.0174 mHz. Examination of the 1989 data shows amplitude modulation over a time-scale of the order of a day, much shorter than what has been observed in other rapidly oscillating Ap (roAp) stars. High spectral and time resolution data obtained using the Very Large Telescope in 2008 confirm the presence of ν2 and short-term modulations in the radial velocity amplitudes of rare earth elements. This suggests growth and decay times shorter than a day, more typical of solar-like oscillations. The driving mechanism of roAp stars and the Sun are different, and the growth and decay seen in the Sun are due to stochastic nature of the driving mechanism. The driving mechanism in roAp stars usually leads to mode stability on a longer time-scale than in the Sun. We interpret the reported change in ν1 between the 1982 and 1989 data as part of the general frequency variability observed in this star on many time-scales
- …
