3 research outputs found

    Sol-Gel Production of Semiconductor Metal Oxides for Gas Sensor Applications

    Get PDF
    As they are widely utilized in industries including the food packaging industry, indoor air quality testing, and real-time monitoring of man-made harmful gas emissions to successfully combat global warming, reliable and affordable gas sensors represent enormous market potential. For environmental monitoring, chemical safety regulation, and many industrial applications, the detection of carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide (NO2), and methane (CH4) gases is essential. To reliably and quantitatively detect these gases, much-improved materials and methods that are adaptable to various environmental factors are needed using low-cost fabrication techniques such as sol–gel. The advantages of employing metal oxide nanomaterials-based chemoresistive for creating high-performance gas sensors are shown by key metrics such as selectivity, sensitivity, reaction time, and detection. The primary sensing methods are also grouped and thoroughly covered. In light of the current constraints, anticipated future developments in the field of sol–gel nanomaterial-based chemoresistive gas sensors are also highlighted

    MoO3 nanowire growth on VO2/WO3 for thermochromic applications

    No full text
    This study explores the structural, electronic, and optical properties of sandwich-structured thin films composed of WO3, MoWO3, and MoO3 as window layers on VO2/WO3 via a physical vapor deposition method. Morphological analysis demonstrates the evolution of distinct nanowires, offering insights into the lattice strain of the VO2 layer toward high-performance thermochromatic devices. Temperature-dependent sheet resistivity is investigated, showcasing significant improvements in conductivity for samples with MoO3 as a window layer. The electrical and optical properties of the MoO3/VO2/WO3 device showed a phase transition temperature (Tc) of 36.8 °C, a transmittance luminous (Tlum) of 54.57%, and a solar modulation ability (ΔTsol) of 12.43. This comprehensive analysis contributes to understanding the growth of nanowires on multi-layered thin films, offering valuable insights into potential applications in bright windows.Dynamics of Micro and Nano System
    corecore