345 research outputs found
Towards Understanding and Overcoming the Antibiotic Resistance Conferred by Acetyltransferases.
Aminoglycoside (AG) antibiotics have been widely applied to the treatment of bacterial infections since the discovery of streptomycin. Having enjoyed over 60 years of clinical success, AGs have encountered problems with bacterial resistance, as do all antibiotics. The covalent chemical modification of the AG structure by AG-modifying enzymes (AMEs) poses a large threat to the future applicability of AGs. Chloramphenicol (CAM), another natural product with excellent antibacterial properties, suffers from a similar resistance problem. The modification of CAM by chloramphenicol acetyltransferase (CAT) renders it inactive. This dissertation focuses on acetyltransferases conferring resistance to antibiotics, discussing progress towards understanding and overcoming a major hurdle in our ability to combat bacterial infections.
Our laboratory reported the unusual regio-versatility of the AG N-acetyltransferase (AAC), Eis, from Mycobacterium tuberculosis (Mtb). We sought to understand the order, number, and regio-specificity of the acetylations carried out by Eis by NMR spectroscopy. We found that Eis not only acetylates multiple positions, but that the positions acetylated and order varies based on the particular AG scaffold. Furthermore, Eis is capable of acetylating amines that have never been reported. We also investigated other anti-TB drugs to determine if it was possible that Eis could cause resistance across drug classes. We found that capreomycin (CAP), a cyclic peptide antibacterial agent, could also be acetylated by Eis.
Using our knowledge of AMEs, we sought to develop novel AGs with improved/maintained activity and the ability to avoid modification by AMEs. A series of molecules were synthesized and tested against numerous bacterial strains. These studies and the knowledge gained regarding Eis will serve as a guide to the development of novel AGs targeting Mtb and other pathogens.
Additionally, we determined the first X-ray crystal structure of CATI with its natural substrate, CAM, bound in the active site, along with a structure of the unbound form of CATI. Comparison to a structure with fusidic acid (FA) bound and CATIII with CAM bound allowed for a deeper understanding of the broader substrate preference of CATI. We hope that the insights provided in our studies may one day aid in the development of novel CAM analogs.PHDMedicinal ChemistryUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96174/1/houghtja_1.pd
The Future of Aminoglycosides: The End or Renaissance?
Although aminoglycosides have been used as antibacterials for decades, their use has been hindered by their inherent toxicity and the resistance that has emerged to these compounds. It seems that such issues have relegated a formerly front-line class of antimicrobials to the proverbial back shelf. However, recent advances have demonstrated that novel aminoglycosides have a potential to overcome resistance as well as to be used to treat HIV-1 and even human genetic disorders, with abrogated toxicity. It is not the end for aminoglycosides, but rather, the challenges faced by researchers have led to ingenuity and a change in how we view this class of compounds, a renaissance.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71366/1/880_ftp.pd
Chemical and Structural Insights into the Regioversatility of the Aminoglycoside Acetyltransferase Eis
A recently discovered cause of tuberculosis resistance to a drug of last resort, the aminoglycoside kanamycin, results from modification of this drug by the enhanced intracellular survival (Eis) protein. Eis is a structurally and functionally unique acetyltransferase with an unusual capability of acetylating aminoglycosides at multiple positions. The extent of this regioversatility and its defining protein features are unclear. Herein, we determined the positions and order of acetylation of five aminoglycosides by NMR spectroscopy. This analysis revealed unprecedented acetylation of the 3′′‐amine of kanamycin, amikacin, and tobramycin, and the γ‐amine of the 4‐amino‐2‐hydroxybutyryl group of amikacin. A crystal structure of Eis in complex with coenzyme A and tobramycin revealed how tobramycin can be accommodated in the Eis active site in two binding modes, consistent with its diacetylation. These studies, describing chemical and structural details of acetylation, will guide future efforts towards designing aminoglycosides and Eis inhibitors to overcome resistance in tuberculosis. Novel modifications of aminoglycosides: The enhanced intracellular survival (Eis) protein of Mycobacterium tuberculosis can acetylate amines at two unprecedented positions on aminoglycoside antibiotics: the 3′′‐amine of kanamycin, amikacin, and tobramycin, and the γ‐amine of the 4‐amino‐2‐hydroxybutyryl group in amikacin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100269/1/cbic_201300359_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/100269/2/2127_ftp.pd
Leveraging PET to image folate receptor α therapy of an antibody-drug conjugate
Background: The folate receptor α (FRα)-targeting antibody-drug conjugate (ADC), IMGN853, shows great antitumor activity against FRα-expressing tumors in vivo, but patient selection and consequently therapy outcome are based on immunohistochemistry. The aim of this study is to develop an antibody-derived immuno-PET imaging agent strategy for targeting FRα in ovarian cancer as a predictor of treatment success. Methods: We developed [89Zr]Zr-DFO-M9346A, a humanized antibody-based radiotracer targeting tumorassociated FRα in the preclinical setting. [89Zr]Zr-DFO-M9346A’s binding ability was tested in an in vitro uptake assay using cell lines with varying FRα expression levels. The diagnostic potential of [89Zr]Zr-M9346A was evaluated in KB and OV90 subcutaneous xenografts. Following intravenous injection of [89Zr]Zr-DFO-M9346A (~90 μCi, 50 μg), PET imaging and biodistribution studies were performed. We determined the blood half-life of [89Zr]Zr-DFO-M9346A and compared it to the therapeutic, radioiodinated ADC [131I]-IMGN853. Finally, in vivo studies using IMG853 as a therapeutic, paired with [89Zr]Zr-DFO-M9346A as a companion diagnostic were performed using OV90 xenografts. Results: DFO-M9346A was labeled with Zr-89 at 37 °C within 60 min and isolated in labeling yields of 85.7 ± 5.7%, radiochemical purities of 98.0 ± 0.7%, and specific activities of 3.08 ± 0.43 mCi/mg. We observed high specificity for binding FRα positive cells in vitro. For PET and biodistribution studies, [89Zr]Zr-M9346A displayed remarkable in vivo performance in terms of excellent tumor uptake for KB and OV xenografts (45.8 ± 29.0 %IA/g and 26.1 ± 7.2 %IA/g), with low non-target tissue uptake in other organs such as kidneys (4.5 ± 1.2 %IA/g and 4.3 ± 0.7 %IA/g). A direct comparison of the blood half life of [89Zr]Zr-M9346A and [131I]-IMGN853 corroborated the equivalency of the radiopharmaceutical and the ADC, paving the way for a companion PET imaging study. Conclusions: We developed a new folate receptor-targeted 89Zr-labeled PET imaging agent with excellent pharmacokinetics in vivo. Good tumor uptake in subcutaneous KB and OV90 xenografts were obtained, and ADC therapy studies were performed with the precision predictor
Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.
Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate.
Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation.
Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined.
Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks.
Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics
Baryonic Popcorn
In the large N limit cold dense nuclear matter must be in a lattice phase.
This applies also to holographic models of hadron physics. In a class of such
models, like the generalized Sakai-Sugimoto model, baryons take the form of
instantons of the effective flavor gauge theory that resides on probe flavor
branes. In this paper we study the phase structure of baryonic crystals by
analyzing discrete periodic configurations of such instantons. We find that
instanton configurations exhibit a series of "popcorn" transitions upon
increasing the density. Through these transitions normal (3D) lattices expand
into the transverse dimension, eventually becoming a higher dimensional (4D)
multi-layer lattice at large densities.
We consider 3D lattices of zero size instantons as well as 1D periodic chains
of finite size instantons, which serve as toy models of the full holographic
systems. In particular, for the finite-size case we determine solutions of the
corresponding ADHM equations for both a straight chain and for a 2D zigzag
configuration where instantons pop up into the holographic dimension. At low
density the system takes the form of an "abelian anti-ferromagnetic" straight
periodic chain. Above a critical density there is a second order phase
transition into a zigzag structure. An even higher density yields a rich phase
space characterized by the formation of multi-layer zigzag structures. The
finite size of the lattices in the transverse dimension is a signal of an
emerging Fermi sea of quarks. We thus propose that the popcorn transitions
indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear
in the JHE
Recommended from our members
Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design.
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer
Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders
Vertebral fractures are an important yet underrecognized manifestation of osteoporosis in children with chronic, glucocorticoid-treated illnesses. Our goal was to determine the incidence and clinical predictors of vertebral fractures in the 3 years following glucocorticoid initiation among pediatric patients with rheumatic disorders. Incident vertebral fractures were evaluated according to the Genant semiquantitative method on lateral radiographs at baseline and then annually in the 3 years following glucocorticoid initiation. Extended Cox models were used to assess the association between vertebral fractures and clinical risk predictors. A total of 134 children with rheumatic disorders were enrolled in the study (mean ± standard deviation (SD) age 9.9 ± 4.4 years; 65% girls). The unadjusted vertebral fracture incidence rate was 4.4 per 100 person-years, with a 3-year incidence proportion of 12.4%. The highest annual incidence occurred in the first year (6.0%; 95% confidence interval (CI) 2.9% to 11.7%). Almost one-half of the patients with fractures were asymptomatic. Every 0.5 mg/kg increase in average daily glucocorticoid (prednisone equivalents) dose was associated with a twofold increased fracture risk (hazard ratio (HR) 2.0; 95% CI 1.1 to 3.5). Other predictors of increased vertebral fracture risk included: (1) increases in disease severity scores between baseline and 12 months; (2) increases in body mass index Z-scores in the first 6 months of each 12-month period preceding the annual fracture assessment; and (3) decreases in lumbar spine bone mineral density Z-scores in the first 6 months of glucocorticoid therapy. As such, we observed that a clinically significant number of children with rheumatic disorders developed incident vertebral fractures in the 3 years following glucocorticoid initiation. Almost one-half of the children were asymptomatic and thereby would have been undiagnosed in the absence of radiographic monitoring. In addition, discrete clinical predictors of incident vertebral fractures were evident early in the course of glucocorticoid therapy
Recommended from our members
Assessing inter-sectoral climate change risks: the role of ISIMIP
The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change
Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise
BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety
- …