12 research outputs found

    Gene and repetitive sequence annotation in the Triticeae

    Full text link
    The Triticeae tribe contains some of the world’s most important agricultural crops (wheat, barley and rye) and is perhaps, one of the most challenging for genome annotation because Triticeae genomes are primarily composed of repetitive sequences. Further complicating the challenge is the polyploidy found in wheat and particularly in the hexaploid bread wheat genome. Genomic sequence data are available for the Triticeae in the form of large collections of Expressed Sequence Tags (>1.5 million) and an increasing number of bacterial artificial chromosome clone sequences. Given that high repetitive sequence content in the Triticeae confounds annotation of protein-coding genes, repetitive sequences have been identified, annotated, and collated into public databases. Protein coding genes in the Triticeae are structurally annotated using a combination of ab initio gene finders and experimental evidence. Functional annotation of protein coding genes involves assessment of sequence similarity to known proteins, expression evidence, and the presence of domain and motifs. Annotation methods and tools for Triticeae genomic sequences have been adapted from existing plant genome annotation projects and were designed to allow for flexibility of single sequence annotation while allowing a whole community annotation effort to be developed. With the availability of an increasing number of annotated grass genomes, comparative genomics can be exploited to accelerate and enhance the quality of Triticeae sequences annotation. This chapter provides a brief overview of the Triticeae genomes features that are challenging for genome annotation and describes the resources and methods available for sequence annotation with a particular emphasis on problems caused by the repetitive fraction of these genomes

    Role of Dehydrins in Plant Stress Response

    No full text

    Genomics of tolerance to abiotic stress in the Triticeae

    No full text
    Genomics platforms offer unprecedented opportunities to identify, select and in some cases clone the genes and the quantitative trait loci (QTLs) that govern the tolerance of Triticeae to abiotic stresses and, consequently, grain yield. Transcriptome profiling and the other \u201comics\u201d platforms provide further information to unravel gene functions and validate the role of candidate genes. This review provides a synopsis of the main results on the studies that have investigated the genomics of Triticeae crops under conditions of abiotic constraints. With their rich biodiversity and high functional plasticity in response to environmental stresses, Triticeae crops provide an ideal ground for taking full advantage of the opportunities offered by genomics approaches. Ultimately, the practical impact of the knowledge and materials generated through genomics-based approaches will depend on their integration and exploitation within the extant breeding programs

    Genetic approaches towards overcoming water deficit in plants - special emphasis on LEAs

    No full text

    Effects of global climate change on marine and estuarine fishes and fisheries

    No full text

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    No full text
    10.1371/journal.pone.0139981PLoS ONE1010e013998

    Vorapaxar in the secondary prevention of atherothrombotic events

    Get PDF
    Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)
    corecore